爱玩科技网
您的当前位置:首页必修二立体几何线面平行、面面平行、线面垂直判定及性质练习

必修二立体几何线面平行、面面平行、线面垂直判定及性质练习

来源:爱玩科技网
线面平行、面面平行、线面垂直判定及性质练习

一、线面平行判定及性质

1.如图,在三棱锥P-ABC中,点Ο、D分别是AC、PC的中点,求证: OD//平面PAB

PDAOCB

2.如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点. 求证:SA∥平面MDB.

3.如图在四棱锥P-ABCD中,M、N分别是AB,PC的中点,若ABCD是平行四边形,求证:MN//平面PAD

1

4.已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥平面BDC.求证:EH∥BD.

AEBFHDGC

练习

5.正方形ABCD交正方形ABEF于AB,M、N在对角线AC、FB上,且M,N是对角线AC、FB的中点.求证:MN//平面BCE

6.如图,S是平行四边形ABCD平面外一点,M,N分别是SA,BD上的点,且求证:MN//平面SBC

S D A M C B F N E AMBN=, SMNDM D N C A

B 2

二、面面平行判定及性质 1.

2.

D1A1C1B1MDPNBCA

3

三、线面垂直判定及性质

1.已知E,F分别是正方形ABCD边AD,AB的中点,EF交AC于M,GC垂直于ABCD所在平面.求证:EF⊥平面GMC.

GDEMAFB

C的中点.求证:2.在三棱锥PABC中,ACBC,ABP为正三角形,记D是ABAB平面PCD.

P A C

B

3.如图AB是圆O的直径,C是圆周上异于A、B的任意一点,PA平面ABC.求证:BC平面PAC.

4

4.在长方体ABCDA1B1C1D1中,底面ABCD是边长为1的正方形,侧棱AA12,E是侧棱BB1的中点。求证:AE平面A1D1E.

D1A1B1C1EDCAB

综合题:

如图,在三棱柱ABCA1B1C1中,侧棱垂直于底面,ABBC,AA1AC2,BC1,

E、F分别为ACAB平面B1BCC1;(2)求证:C1F//平面11、BC的中点.(1)求证:

ABE;(3)求三棱锥EABC的体积.

A1EB1C1AB

CF

5

因篇幅问题不能全部显示,请点此查看更多更全内容