爱玩科技网
您的当前位置:首页2014年河南省普通高中毕业班高考适应性测试——数学理

2014年河南省普通高中毕业班高考适应性测试——数学理

来源:爱玩科技网
2014年河南省普通高中毕业班高考适应性测试

理科数学

一、选择题:本大题共12小题,每小题5分。

a+i1.复数z=为纯虚数,则实数a的值为

4+3i3344A. B.- C. D.-

44332.命题“x∈R,ex-x+1≥0”的否定是

A.x∈R,lnx+x+1<0 B.x∈R,ex-x+1≥0 C.x∈R,ex-x+1>0 D.x∈R,ex-x+1<0 3.如右图,是一程序框图,若输出结果为

5,则其中的“?”11x=2,曲线y=

1及x轴所围成的图形的面积是2 ln2;③已知随机变量ξ服从正态分布Nx(1,2),P(4)0.79,则P(2)0.21;④设回归直线方程为y22.5x,当变量x增加一个单位时,y平均增加2个单位. 其中正确结论的个数为 A.1 B.2 C.3 D.4

uuurrr1uuu3uuu9.在△ABC中,|AB|=3,|AC|=2,AD=AB+AC,则直线AD通过△ABC

24的

A.垂心 B.外心 C.重心 D.内心 10.已知一个几何体的三视图及有关数据如右图所示,则该几何体的体积为 A.23 B.

4323 C.3 D. 33

x2y213a与双曲线2-2=1(a>0,b>0)11.已知圆x+y=ab222框内应填入

A.k11 B.k10 C.k9 D.k10

4.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A=“第一次取到的

是奇数”,B=“第二次取到的是奇数”,则P(BA)

1321 A. B. C. D.

510525.下列函数中,既是奇函数又在定义域内单调递减的函数为

e-x-ex1 A.y= B.y= C.y=sinx D.y=lgx

2x的右支交于A,B两点,且直线AB过双曲线的右焦点,则

双曲线的离心率为

A.2 B.3 C.2 D. 3

x+2,x0,12.已知函数f(x)若函数yf(x)k(xe2)的零点恰有四个,则实数k

lnx,x0.的值为

11A.e B. C.e2 D.2

ee二、填空题:本大题共4小题,每小题5分.

x+y-40,13.实数x,y满足条件x-2y+20,则x-y的最小值为______________

x0,y0,1-3nn为偶数,14.已知数列{an}的通项公式为an=n-1则其前10项和为____________.

2,n为奇数.6.已知集合A=Axx2axa10,且集合Z∩CRA中只含有一个元素,则实数a的取值范围是

A.(-3,-1) B.[-2,-1) C.(-3,-2] D.[-3,-1] 7.在△ABC中,a、b、c分别是角A、B、C的对边,且(2ac)cosBbcosC0.角B的值为

25 A. B. C. D.

3663118.给出下列四个结论:①二项式(x2)6的展开式中,常数项是-15;②由直线x=,

x2

1

15.在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C

上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C

的准线的距离为.则抛物线C的方程为___________

16.已知四棱锥P-ABCD的底面是边长为a的正方形,所有侧棱长相等且等于2a,若其

a外接球的半径为R,则等于____________

R三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{an}满足a1=5,an+1=

8an-121,nN, bn=.

3an-4an-2uuuruuur (Ⅱ)当点P异于点B时,求证:OP·OQ为定值.

21.(本小题满分12分)函数f(x)的定义域为D,若存在闭区间[a,b]D,使得函数f(x)满足:(1)f(x)在[a,b]内是单调函数;(2)f(x)在[a,b]上的值域为[ka,kb],则称区间[a,b]为yf(x)的“和谐k区间”.

(Ⅰ)若函数f(x)ex存在“和谐k区间”,求正整数k的最小值;

(Ⅱ)若函数g(x)m2,求实数m的取x(m2)lnx2x(m0)存在“和谐2区间”

2 (Ⅰ)求证:数列{bn}为等差数列,并求其通项公式;

(Ⅱ)已知以数列{bn}的公差为周期的函数f(x)=Asin(ωx+)[A>0,ω>0,1]上单调递减,求的取值范围. 218.(本小题满分12分)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,M,N分别是BC、PC的中点.

(Ⅰ)证明:AM⊥PD;

(Ⅱ)若H为PD上的动点,MH与平面PAD所成最大角的

∈(0,π)]在区间[0,

正切值为6,求二面角M-AN-C的余弦值. 219.(本小题满分12分)居住在同一个小区的甲、乙、丙三位教师家离学校都较远,每天

1早上要开车去学校上班,已知从该小区到学校有两条路线,走线路①堵车的概率为,不

43堵车的概率为;走线路②堵车的概率为p,不堵车的概率为1-p.若甲、乙两人走线路

4①,丙老师因其他原因走线路②,且三人上班是否堵车相互之间没有影响.

7 (Ⅰ)若三人中恰有一人被堵的概率为,求走线路②堵车的概率;

16(Ⅱ)在(Ⅰ)的条件下,求三人中被堵的人数ξ的分布列和数学期望.

x2y220.(本小题满分12分)过点C(0,3)的椭圆2+2=1ab值范围.

请考生在第22、23、24三题中任选一题做答.如果多做。则按所做的第一题记分.做答时用2B铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分)如图,直线AB经过⊙O上一点C,且OA=OB,CA=CB,⊙O交直线OB于点E、D. (Ⅰ)求证:直线AB是⊙O的切线;

1 (Ⅱ)若tan∠CED=,⊙O的半径为6,求OA的长.

2 23.(本小题满分10分)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2=acos (a>0),过点P(2,4)的

x=-2+直线l的参数方程为y=-4+2t,2 (t为参数),直线l与曲线C相交于A,B两点. 2t,2(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程; (Ⅱ)若|PA|·|PB|=|AB|2,求a的值.

24.(本小题满分10分)已知函数f(x)2xa5x,其中实数a0. (Ⅰ)当a=3时,求不等式f(x)4x6的解集; (Ⅱ)若不等式f(x)0的解集为xx2,求a的值.

2

(a>b>0)的离心率为

1,椭圆与x轴交于Aa,0和2Ba,0两点,过点C的直线l与椭圆交于另一点D,并与x

轴交于点P,直线AC与直线BD交于点Q.

(Ⅰ)当直线l过椭圆的右焦点时,求线段CD的长;

2014年河南省普通高中毕业班高考适应性测试

理科数学试题参及评分标准

一、选择题(每小题5分,共60分) 题号 1 2 3 4 5 6 A 7 C 8 B 9 D 10 B 11 C 12 D B D B D B 答案 二、填空题(每小题5分,共20分) 而PAADA,

所以AM平面PAD.„„„„„„„„„„„„„„4分 又PD平面PAD,所以AMPD.„„„„„„„5分

(Ⅱ)解法一:设AB2,H为PD上任意一点,连接AH、MH. 由(Ⅰ)可知:AM平面PAD.

则MHA为MH与平面PAD所成的

z 角.„„„„„„„„„„„„„6分

P在RtMAH中,AM23,

NA(13) 1 (14)256 (15) x2y (16)三、解答题

17.解:(Ⅰ)bn1bn14 4所以当AH最短时,MHA最大,„„„„„„„„„„„7分 即当AHPD时,MHA最大,此时

H D3a43a6311111nn.

8a12an12an2n2an22an4an22an423an4tanMHA因此AHAM36

.AHAH2By 所以数列{bn}为首项为b1故bn113,公差为的等差数列, „„„„„„„„4分 a12322.又AD2,所以ADH45是PA2.

如图建立空间直角坐标系,则P(0,0,2),

MC,于

x „„8分

139n7(n1). „„„„„„„„„„„„„„„„„„„„„„„6分 3262224(Ⅱ)由于函数f(x)的周期T,所以, „„„„„„„„8分 3T321423又x[0,],x[,][,], „„„„„„„„„„„„„„10分

23322D(0,2,0),M(3,0,0),B(3,1,0),C(3,1,0), E(3,1,0).

22所以

≥,22≤3.233131则设AC的中点为E,由(1)知BE就是面PACN(,,1)AN(,,1),AM(3,0,0),

2222的法向量,面角为.

所以

P33EB(,,0).设平面MAN的法向量为n(x,y,1),二面角MANC的平

22[526 „„„„„„„„„„„„„12分 ,].SN 60,

BAOH18. 解:(Ⅰ)证明:由四边形ABCD为菱形,ABC可得

DCMABC为正三角形.因为M为BC的中点,所以AMBC.„„„„„„„„„„„„„„1分

又BC∥AD,因此AMAD.因为PA平面ABCD,AM平面ABCD,所以PAAM. „„„„„„3分

由 AMn0,3x0,x0,y2,z1,n(0,2,1).31ANn0.xy10.22„„„„„„„„„10分

coscosEB,n3

315

.553

二面角MANC的余弦值为15.„„„„„„„„„„„„„„„„„„„12分

5答:p的值为11, 即走线路②堵车的概率为„„„„„„„„„„„„„„„„„5分 33.(Ⅱ)解法二:设AB2,H为PD上任意一点,连接AH、MH

由(Ⅰ)可知:AM平面PAD.

则MHA为MH与平面PAD所成的角.„„„„„„„„„„„„„„„6分 在RtMAH中,AM(Ⅱ)可能的取值为0,1,2,3 „„„„„„„„„„„„„„„„„„„„„„6分 P(0)3,

所以当AH最短时,MHA最大,„„„„„„„„„„„„„„„„„„„„„7分

即当AH33237  , P(1)443816 .

PD时,MHA最大,此时tanMHAAMAH36.

AH2112111111131P(2)C2 ,P(3)

4434434348„„„„„„„„„„„„„8分

的分布列为:

 0 1 2 3

3711 P 8168

„„„„„„„„10分

2.又AD2,所以ADH45,于是PA2.„„„„„„„„8分

因为PA平面ABCD,PA平面PAC,

所以平面PAC平面ABCD.„„„„„„„„„„„„„„„„„„„„„„„9分

过M作MOAC于O,则由面面垂直的性质定理可知:MO平面PAC,所以MOAN,过M作MSAN于S,连接OS,AN平面MSO,所以ANSO则MSO为二面角MANC的平面角. „„„„„„„„„„„„„10分

因此AH在RtAOM中,

3,3OMAMsin30OAAMcos30

22又N是PC的中点,在RtASO中,

SOAOsin4532

4711523 . 16865答:三人中被堵的人数的数学期望为.„„„„„„„„„„„„„„„„„„12分

6所以E0120. 解:(Ⅰ)由已知得b38又

SMMO2SO230 „„„„„„„„„„„„„„„„„„„„„11分 43,c1,得a2a2所以,椭圆x在RtMSO中,

cosMSOSO15

SM515.„„„„„„„„„„„„„„„„„„12分 52y21.„„„„3分 432y C B O P A x D Q 椭圆的右焦点为F(1,0),此时直线l的方程为

即二面角MANC的余弦值为

y3x3.

由y7311319.解:(Ⅰ)由已知条件得C2(1p)p .„„„„„„„„„3分

44416即3p1,则p

223x4y12.3x3, 1 . 34

解得

8x10,x2.

5所以

816CD(1k2)x1x24.„„„„„„„„„„„„„„„„„6分

553„„„„„„„„„„„„„„7分 ).283k

x10,或x2.234k上单调递增,所以v(x)≥v(lnk),„„„„„„„„„„„„„„„„„„3分

由于v(x)在R上有两个零点,所以v(lnk)elnk(Ⅱ)当直线l与x轴垂直时与题意不符,所以直线l与x轴不垂直,即直线的斜率存在. 设直线l的方程为

klnkk(1lnk)0.

所以ke,又k为正整数,所以k的最小值为3. „„„„„„„„„„„„„5分 (Ⅱ)由题意知函数g(x)的定义域为(0,),

ykx3(k0且k代入椭圆的方程,化简得(34k2)x283kx0,解得3(34k)

.234k2m2mx22xm2(x1)(mxm2), g(x)mx2xxx由于x0,m≥0,所以

代入直线l的方程,得

y13,或y2mxm20,由g(x)0知函数g(x)在区间(1,)上单调递增; x由g(x)0知函数g(x)在区间(0,1)上单调递减. „„„„„„„„„„„„„„„„7分

所以,D的坐标为

83k3(34k2)„„„„„„„„„„„„„„„„„„9分 (,).2234k34k2yy2032k3,因B(2,0),

1kBD,

x2232k3232k3

(x2).22k3由于函数g(x)存在“和谐2区间” [a,b],若[a,b](0,1],则又直线AC的方程为xg(a)2b,

g(b)2a.所以直线BD的方程为

ym2g(a)a(m2)lna2a2b,2即

mg(b)b2(m2)lnb2b2a.2两式相加得

联立解得

4kx,即Q(4k,2k3).„„„„„„„„„„„„„„„„10分 33y2k3.3 所以34k.

P(,0)OPOQ(,0)(,2k3)404kk3m2m2ab(m2)lna(m2)lnb0, 22由于[a,b](0,1]及m≥0,易知上式不成立. „„„„„„„„„„„„„„8分

若[a,b][1,),由g(x)在区间[1,)上单调递增知,a,b为方程f(x)2x的两个不等根,

而P的坐标为

所以OPOQ为定值4. „„„„„„„„„„„„„„„„„„„„„„„12分

21.解:(Ⅰ)由于函数f(x)e为R上的增函数,若f(x)在[a,b]上的值域为[ka,kb],则必有

xm2mx2(m2)m2. 令h(x)f(x)2xx(m2)lnx,则h(x)mxxx2若m0,则h(x)2lnx在[1,)单调递减,不可能有两个不同零点;„„„10分

f(a)ka,f(b)kb,所以a,b为方程f(x)kx的两个不等根,„„„„„„„1分

令v(x)f(x)kxekx(kN),则v(x)ek,由v(x)ek0知xlnk, 由v(x)ek0知0xlnk,所以函数v(x)在区间(,lnk)单调递减,在区间(lnk,)

5

xxxxm2mx2(m2),)上单调递增;同样,由h(x)00知,h(x)在[若m0,h(x)mx知,h(x)在[1,m2)上单调递减. m函数h(x)m2x2(m2)lnx在[1,)上有两个不同零点,又h(1)m20,故有 h(m2m)m2m2m(m2)lnm2m0,解之得0m2e1. 综上,所求实数m的取值范围为0m2e1.„„„„„„„„„„„„„„12分 22.解:(Ⅰ)如图,连接OC,

∵OAOB ,CACB,∴OCAB,∴AB是⊙O的切线. „„„„„„4分 (Ⅱ)∵ ED是直径, ∴ECD90,RtBCD中,

tanCED1, 2CD1 ∵AB是⊙O的切线,

EC2.E ∴BCDE.又 ∵CBDEBC ∴CBD∽

O EBC,∴

BDBC=CDEC=12. 设BDx,BC2x,

又BC2BDBE, ∴ (2x)2=x·(x12).

A D C

B

解得:x10,x24, ∵BDx0 , ∴BD4 .

∴OAOBBDOD4610.„„„„„„„„„„„„„„„„„6分 23.解:(Ⅰ) 由sin2acos(a0)得2sin2acos(a0),

∴曲线C的直角坐标方程为y2ax(a0).„„„„„„„„„„„„„„„„„„„2分 直线l的普通方程为yx2.„„„„„„„„„„„„„„„„„„„„„„„„4分 (Ⅱ)将直线l的参数方程代入曲线C的直角坐标方程y2ax(a0)中, 得t22(a8)t4(a8)0, 设A、B两点对应的参数分别为t1,t2, 则有t1t22(a8),t1t24(a8).„„„„„„„„„„„„„„„„„„„„6分

∵PAPBAB2,

∴(t221t2)t1t2, 即(t1t2)5t1t2.„„„„„„„„„„„„„„„„„„„8分 ∴[2(8a)]220(8a),a23a40.

解之得:a2或a8 (舍去),∴a的值为2.„„„„„„„„„„„„„„„„10分 24.解:(Ⅰ)当a3时,f(x)≥4x6可化为2x3≥x6,

2x3≥x6或2x3≤x6.

由此可得x≥3或x≤3.

故不等式f(x)≥4x6的解集为{xx≥3或x≤3}.„„„„„„„„„„„„„„5分 (Ⅱ)法一:(从去绝对值的角度考虑)

由fx≤0,得2xa≤5x,此不等式化等价于x≥a2,或xa2, 2xa5x≤0.(2xa)5x≤0.解之得x≥a,xa,22a或a

x≤7.x≤3.因为a0,所以不等式组的解集为xx≤a,由题设可得a332,故a6.„„„„„„„„10分

法二:(从等价转化角度考虑)

由fx≤0,得2xa≤5x,此不等式化等价于5x≤2xa≤5x,

a即为不等式组x≤,5x≤2xa,32xa≤5x. 解得

x≤a7.因为a0,所以不等式组的解集为xx≤a,由题设可得a332,故a6.„„„„„„„„10分

6

因篇幅问题不能全部显示,请点此查看更多更全内容