2014年河南省普通高中毕业班高考适应性测试
理科数学
一、选择题:本大题共12小题,每小题5分。
a+i1.复数z=为纯虚数,则实数a的值为
4+3i3344A. B.- C. D.-
44332.命题“x∈R,ex-x+1≥0”的否定是
A.x∈R,lnx+x+1<0 B.x∈R,ex-x+1≥0 C.x∈R,ex-x+1>0 D.x∈R,ex-x+1<0 3.如右图,是一程序框图,若输出结果为
5,则其中的“?”11x=2,曲线y=
1及x轴所围成的图形的面积是2 ln2;③已知随机变量ξ服从正态分布Nx(1,2),P(4)0.79,则P(2)0.21;④设回归直线方程为y22.5x,当变量x增加一个单位时,y平均增加2个单位. 其中正确结论的个数为 A.1 B.2 C.3 D.4
uuurrr1uuu3uuu9.在△ABC中,|AB|=3,|AC|=2,AD=AB+AC,则直线AD通过△ABC
24的
A.垂心 B.外心 C.重心 D.内心 10.已知一个几何体的三视图及有关数据如右图所示,则该几何体的体积为 A.23 B.
4323 C.3 D. 33
x2y213a与双曲线2-2=1(a>0,b>0)11.已知圆x+y=ab222框内应填入
A.k11 B.k10 C.k9 D.k10
4.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A=“第一次取到的
是奇数”,B=“第二次取到的是奇数”,则P(BA)
1321 A. B. C. D.
510525.下列函数中,既是奇函数又在定义域内单调递减的函数为
e-x-ex1 A.y= B.y= C.y=sinx D.y=lgx
2x的右支交于A,B两点,且直线AB过双曲线的右焦点,则
双曲线的离心率为
A.2 B.3 C.2 D. 3
x+2,x0,12.已知函数f(x)若函数yf(x)k(xe2)的零点恰有四个,则实数k
lnx,x0.的值为
11A.e B. C.e2 D.2
ee二、填空题:本大题共4小题,每小题5分.
x+y-40,13.实数x,y满足条件x-2y+20,则x-y的最小值为______________
x0,y0,1-3nn为偶数,14.已知数列{an}的通项公式为an=n-1则其前10项和为____________.
2,n为奇数.6.已知集合A=Axx2axa10,且集合Z∩CRA中只含有一个元素,则实数a的取值范围是
A.(-3,-1) B.[-2,-1) C.(-3,-2] D.[-3,-1] 7.在△ABC中,a、b、c分别是角A、B、C的对边,且(2ac)cosBbcosC0.角B的值为
25 A. B. C. D.
3663118.给出下列四个结论:①二项式(x2)6的展开式中,常数项是-15;②由直线x=,
x2
1
15.在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C
上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C
的准线的距离为.则抛物线C的方程为___________
16.已知四棱锥P-ABCD的底面是边长为a的正方形,所有侧棱长相等且等于2a,若其
a外接球的半径为R,则等于____________
R三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{an}满足a1=5,an+1=
8an-121,nN, bn=.
3an-4an-2uuuruuur (Ⅱ)当点P异于点B时,求证:OP·OQ为定值.
21.(本小题满分12分)函数f(x)的定义域为D,若存在闭区间[a,b]D,使得函数f(x)满足:(1)f(x)在[a,b]内是单调函数;(2)f(x)在[a,b]上的值域为[ka,kb],则称区间[a,b]为yf(x)的“和谐k区间”.
(Ⅰ)若函数f(x)ex存在“和谐k区间”,求正整数k的最小值;
(Ⅱ)若函数g(x)m2,求实数m的取x(m2)lnx2x(m0)存在“和谐2区间”
2 (Ⅰ)求证:数列{bn}为等差数列,并求其通项公式;
(Ⅱ)已知以数列{bn}的公差为周期的函数f(x)=Asin(ωx+)[A>0,ω>0,1]上单调递减,求的取值范围. 218.(本小题满分12分)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,M,N分别是BC、PC的中点.
(Ⅰ)证明:AM⊥PD;
(Ⅱ)若H为PD上的动点,MH与平面PAD所成最大角的
∈(0,π)]在区间[0,
正切值为6,求二面角M-AN-C的余弦值. 219.(本小题满分12分)居住在同一个小区的甲、乙、丙三位教师家离学校都较远,每天
1早上要开车去学校上班,已知从该小区到学校有两条路线,走线路①堵车的概率为,不
43堵车的概率为;走线路②堵车的概率为p,不堵车的概率为1-p.若甲、乙两人走线路
4①,丙老师因其他原因走线路②,且三人上班是否堵车相互之间没有影响.
7 (Ⅰ)若三人中恰有一人被堵的概率为,求走线路②堵车的概率;
16(Ⅱ)在(Ⅰ)的条件下,求三人中被堵的人数ξ的分布列和数学期望.
x2y220.(本小题满分12分)过点C(0,3)的椭圆2+2=1ab值范围.
请考生在第22、23、24三题中任选一题做答.如果多做。则按所做的第一题记分.做答时用2B铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分)如图,直线AB经过⊙O上一点C,且OA=OB,CA=CB,⊙O交直线OB于点E、D. (Ⅰ)求证:直线AB是⊙O的切线;
1 (Ⅱ)若tan∠CED=,⊙O的半径为6,求OA的长.
2 23.(本小题满分10分)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2=acos (a>0),过点P(2,4)的
x=-2+直线l的参数方程为y=-4+2t,2 (t为参数),直线l与曲线C相交于A,B两点. 2t,2(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程; (Ⅱ)若|PA|·|PB|=|AB|2,求a的值.
24.(本小题满分10分)已知函数f(x)2xa5x,其中实数a0. (Ⅰ)当a=3时,求不等式f(x)4x6的解集; (Ⅱ)若不等式f(x)0的解集为xx2,求a的值.
2
(a>b>0)的离心率为
1,椭圆与x轴交于Aa,0和2Ba,0两点,过点C的直线l与椭圆交于另一点D,并与x
轴交于点P,直线AC与直线BD交于点Q.
(Ⅰ)当直线l过椭圆的右焦点时,求线段CD的长;
2014年河南省普通高中毕业班高考适应性测试
理科数学试题参及评分标准
一、选择题(每小题5分,共60分) 题号 1 2 3 4 5 6 A 7 C 8 B 9 D 10 B 11 C 12 D B D B D B 答案 二、填空题(每小题5分,共20分) 而PAADA,
所以AM平面PAD.„„„„„„„„„„„„„„4分 又PD平面PAD,所以AMPD.„„„„„„„5分
(Ⅱ)解法一:设AB2,H为PD上任意一点,连接AH、MH. 由(Ⅰ)可知:AM平面PAD.
则MHA为MH与平面PAD所成的
z 角.„„„„„„„„„„„„„6分
P在RtMAH中,AM23,
NA(13) 1 (14)256 (15) x2y (16)三、解答题
17.解:(Ⅰ)bn1bn14 4所以当AH最短时,MHA最大,„„„„„„„„„„„7分 即当AHPD时,MHA最大,此时
H D3a43a6311111nn.
8a12an12an2n2an22an4an22an423an4tanMHA因此AHAM36
.AHAH2By 所以数列{bn}为首项为b1故bn113,公差为的等差数列, „„„„„„„„4分 a12322.又AD2,所以ADH45是PA2.
如图建立空间直角坐标系,则P(0,0,2),
MC,于
x „„8分
139n7(n1). „„„„„„„„„„„„„„„„„„„„„„„6分 3262224(Ⅱ)由于函数f(x)的周期T,所以, „„„„„„„„8分 3T321423又x[0,],x[,][,], „„„„„„„„„„„„„„10分
23322D(0,2,0),M(3,0,0),B(3,1,0),C(3,1,0), E(3,1,0).
22所以
≥,22≤3.233131则设AC的中点为E,由(1)知BE就是面PACN(,,1)AN(,,1),AM(3,0,0),
2222的法向量,面角为.
所以
P33EB(,,0).设平面MAN的法向量为n(x,y,1),二面角MANC的平
22[526 „„„„„„„„„„„„„12分 ,].SN 60,
BAOH18. 解:(Ⅰ)证明:由四边形ABCD为菱形,ABC可得
DCMABC为正三角形.因为M为BC的中点,所以AMBC.„„„„„„„„„„„„„„1分
又BC∥AD,因此AMAD.因为PA平面ABCD,AM平面ABCD,所以PAAM. „„„„„„3分
由 AMn0,3x0,x0,y2,z1,n(0,2,1).31ANn0.xy10.22„„„„„„„„„10分
coscosEB,n3
315
.553
二面角MANC的余弦值为15.„„„„„„„„„„„„„„„„„„„12分
5答:p的值为11, 即走线路②堵车的概率为„„„„„„„„„„„„„„„„„5分 33.(Ⅱ)解法二:设AB2,H为PD上任意一点,连接AH、MH
由(Ⅰ)可知:AM平面PAD.
则MHA为MH与平面PAD所成的角.„„„„„„„„„„„„„„„6分 在RtMAH中,AM(Ⅱ)可能的取值为0,1,2,3 „„„„„„„„„„„„„„„„„„„„„„6分 P(0)3,
所以当AH最短时,MHA最大,„„„„„„„„„„„„„„„„„„„„„7分
即当AH33237 , P(1)443816 .
PD时,MHA最大,此时tanMHAAMAH36.
AH2112111111131P(2)C2 ,P(3)
4434434348„„„„„„„„„„„„„8分
的分布列为:
0 1 2 3
3711 P 8168
„„„„„„„„10分
2.又AD2,所以ADH45,于是PA2.„„„„„„„„8分
因为PA平面ABCD,PA平面PAC,
所以平面PAC平面ABCD.„„„„„„„„„„„„„„„„„„„„„„„9分
过M作MOAC于O,则由面面垂直的性质定理可知:MO平面PAC,所以MOAN,过M作MSAN于S,连接OS,AN平面MSO,所以ANSO则MSO为二面角MANC的平面角. „„„„„„„„„„„„„10分
因此AH在RtAOM中,
3,3OMAMsin30OAAMcos30
22又N是PC的中点,在RtASO中,
SOAOsin4532
4711523 . 16865答:三人中被堵的人数的数学期望为.„„„„„„„„„„„„„„„„„„12分
6所以E0120. 解:(Ⅰ)由已知得b38又
SMMO2SO230 „„„„„„„„„„„„„„„„„„„„„11分 43,c1,得a2a2所以,椭圆x在RtMSO中,
cosMSOSO15
SM515.„„„„„„„„„„„„„„„„„„12分 52y21.„„„„3分 432y C B O P A x D Q 椭圆的右焦点为F(1,0),此时直线l的方程为
即二面角MANC的余弦值为
y3x3.
由y7311319.解:(Ⅰ)由已知条件得C2(1p)p .„„„„„„„„„3分
44416即3p1,则p
223x4y12.3x3, 1 . 34
解得
8x10,x2.
5所以
816CD(1k2)x1x24.„„„„„„„„„„„„„„„„„6分
553„„„„„„„„„„„„„„7分 ).283k
x10,或x2.234k上单调递增,所以v(x)≥v(lnk),„„„„„„„„„„„„„„„„„„3分
由于v(x)在R上有两个零点,所以v(lnk)elnk(Ⅱ)当直线l与x轴垂直时与题意不符,所以直线l与x轴不垂直,即直线的斜率存在. 设直线l的方程为
klnkk(1lnk)0.
所以ke,又k为正整数,所以k的最小值为3. „„„„„„„„„„„„„5分 (Ⅱ)由题意知函数g(x)的定义域为(0,),
ykx3(k0且k代入椭圆的方程,化简得(34k2)x283kx0,解得3(34k)
.234k2m2mx22xm2(x1)(mxm2), g(x)mx2xxx由于x0,m≥0,所以
代入直线l的方程,得
y13,或y2mxm20,由g(x)0知函数g(x)在区间(1,)上单调递增; x由g(x)0知函数g(x)在区间(0,1)上单调递减. „„„„„„„„„„„„„„„„7分
所以,D的坐标为
83k3(34k2)„„„„„„„„„„„„„„„„„„9分 (,).2234k34k2yy2032k3,因B(2,0),
1kBD,
x2232k3232k3
(x2).22k3由于函数g(x)存在“和谐2区间” [a,b],若[a,b](0,1],则又直线AC的方程为xg(a)2b,
g(b)2a.所以直线BD的方程为
ym2g(a)a(m2)lna2a2b,2即
mg(b)b2(m2)lnb2b2a.2两式相加得
联立解得
4kx,即Q(4k,2k3).„„„„„„„„„„„„„„„„10分 33y2k3.3 所以34k.
P(,0)OPOQ(,0)(,2k3)404kk3m2m2ab(m2)lna(m2)lnb0, 22由于[a,b](0,1]及m≥0,易知上式不成立. „„„„„„„„„„„„„„8分
若[a,b][1,),由g(x)在区间[1,)上单调递增知,a,b为方程f(x)2x的两个不等根,
而P的坐标为
所以OPOQ为定值4. „„„„„„„„„„„„„„„„„„„„„„„12分
21.解:(Ⅰ)由于函数f(x)e为R上的增函数,若f(x)在[a,b]上的值域为[ka,kb],则必有
xm2mx2(m2)m2. 令h(x)f(x)2xx(m2)lnx,则h(x)mxxx2若m0,则h(x)2lnx在[1,)单调递减,不可能有两个不同零点;„„„10分
f(a)ka,f(b)kb,所以a,b为方程f(x)kx的两个不等根,„„„„„„„1分
令v(x)f(x)kxekx(kN),则v(x)ek,由v(x)ek0知xlnk, 由v(x)ek0知0xlnk,所以函数v(x)在区间(,lnk)单调递减,在区间(lnk,)
5
xxxxm2mx2(m2),)上单调递增;同样,由h(x)00知,h(x)在[若m0,h(x)mx知,h(x)在[1,m2)上单调递减. m函数h(x)m2x2(m2)lnx在[1,)上有两个不同零点,又h(1)m20,故有 h(m2m)m2m2m(m2)lnm2m0,解之得0m2e1. 综上,所求实数m的取值范围为0m2e1.„„„„„„„„„„„„„„12分 22.解:(Ⅰ)如图,连接OC,
∵OAOB ,CACB,∴OCAB,∴AB是⊙O的切线. „„„„„„4分 (Ⅱ)∵ ED是直径, ∴ECD90,RtBCD中,
tanCED1, 2CD1 ∵AB是⊙O的切线,
EC2.E ∴BCDE.又 ∵CBDEBC ∴CBD∽
O EBC,∴
BDBC=CDEC=12. 设BDx,BC2x,
又BC2BDBE, ∴ (2x)2=x·(x12).
A D C
B
解得:x10,x24, ∵BDx0 , ∴BD4 .
∴OAOBBDOD4610.„„„„„„„„„„„„„„„„„6分 23.解:(Ⅰ) 由sin2acos(a0)得2sin2acos(a0),
∴曲线C的直角坐标方程为y2ax(a0).„„„„„„„„„„„„„„„„„„„2分 直线l的普通方程为yx2.„„„„„„„„„„„„„„„„„„„„„„„„4分 (Ⅱ)将直线l的参数方程代入曲线C的直角坐标方程y2ax(a0)中, 得t22(a8)t4(a8)0, 设A、B两点对应的参数分别为t1,t2, 则有t1t22(a8),t1t24(a8).„„„„„„„„„„„„„„„„„„„„6分
∵PAPBAB2,
∴(t221t2)t1t2, 即(t1t2)5t1t2.„„„„„„„„„„„„„„„„„„„8分 ∴[2(8a)]220(8a),a23a40.
解之得:a2或a8 (舍去),∴a的值为2.„„„„„„„„„„„„„„„„10分 24.解:(Ⅰ)当a3时,f(x)≥4x6可化为2x3≥x6,
2x3≥x6或2x3≤x6.
由此可得x≥3或x≤3.
故不等式f(x)≥4x6的解集为{xx≥3或x≤3}.„„„„„„„„„„„„„„5分 (Ⅱ)法一:(从去绝对值的角度考虑)
由fx≤0,得2xa≤5x,此不等式化等价于x≥a2,或xa2, 2xa5x≤0.(2xa)5x≤0.解之得x≥a,xa,22a或a
x≤7.x≤3.因为a0,所以不等式组的解集为xx≤a,由题设可得a332,故a6.„„„„„„„„10分
法二:(从等价转化角度考虑)
由fx≤0,得2xa≤5x,此不等式化等价于5x≤2xa≤5x,
a即为不等式组x≤,5x≤2xa,32xa≤5x. 解得
x≤a7.因为a0,所以不等式组的解集为xx≤a,由题设可得a332,故a6.„„„„„„„„10分
6