爱玩科技网
您的当前位置:首页相似三角形的性质练习

相似三角形的性质练习

来源:爱玩科技网


相似三角形的性质

一.选择题(共6小题)

1.如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为( )

A. B. C. D.

2.如图,在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是( )A.5 B.8.2 C.6.4 D.1.8

3.如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足( )A.a≥b

B.a≥bC.a≥bD.a≥2b

4.如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1

三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第10个正△A10B10C10的面积是( )A.

B.

C.

D.

5.如图,正方形ABCD中,AE=EF=FB,BG=2CG,DE,DF分别交AG于P和Q,以下说法中正确的是( )①AG⊥FD;②AQ:QG=6:7;③EQ:PD=2:11;④SGCDQ:SBGQF=17:9.

A.①② B.②③ C.①②③

D.①②④

第1页(共7页)

6.如图,点E是正方形ABCD的边BC延长线一点,连接AE交CD于F,作∠AEG=∠AEB,EG交CD的延长线于G,连接AG,当CE=BC=2时,作FH⊥AG于H,连接DH,则DH的长为( )A.2﹣

B.

C.

D.

二.填空题(共13小题)

7.在△ABC中,AB=6cm,AC=5cm,点D、E分别在AB、AC上.若△ADE与△ABC相似,且S△

ADE:S四边形BCED=1:8,则

AD= cm.

8.如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1,若△E1FA1∽△E1BF,则AD= .

9.已知△ABC∽△A′B′C′且S△ABC:S△A′B′C′=1:2,则AB:A′B′= .

10.如图,已知△ABC∽△DBE,AB=6,DB=8,则= .

11.如图是一个边长为1的正方形组成的网络,△ABC与△A1B1C1都是格点三角形(顶点在网格交点处),并且△ABC∽△A1B1C1,则△ABC与△A1B1C1的相似比是 .

12.如图,△ABC中,AB=9,AC=6,点E在AB上且AE=3,点F在AC上,连接EF,若△AEF与

第2页(共7页)

△ABC相似,则AF= .

13.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是 米.

14.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.

(Ⅰ)△ABC的面积等于 ;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明) . 15.如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是 mm.

16.数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8

第3页(共7页)

米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为 米.

17.如图所示为农村一古老的捣碎器,已知支撑柱AB的高为0.3米,踏板DE长为1.6米,支撑点A到踏脚D的距离为0.6米,现在踏脚着地,则捣头点E上升了 米.

18.如图,在已建立直角坐标系的4×4的正方形方格纸中,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P、A、B为顶点的三角形与△ABC相似(C点除外),则格点P的坐标是 .

19.如图,四边形ABCD为正方形,H是AD上任意一点,连接CH,过B作BM⊥CH于M,交AC于F,过D作DE∥BM交AC于E,交CH于G,在线段BF上作PF=DG,连接PG,BE,其中PG交AC于N点,K为BE上一点,连接PK,KG,若∠BPK=∠GPK,CG=12,KP:EF=3:5,求

的值为 .

三.解答题(共11小题)

20.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;

(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.

第4页(共7页)

21.已知关于x的方程x2﹣(q+p+1)x+p=0(q≥0)的两个实数根为α、β,且α≤β.

(1)试用含有α、β的代数式表示p、q;(2)求证:α≤1≤β;

(3)若以α、β为坐标的点M(α、β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2),B(,1),C(1,1),问是否存在点M,使p+q=?若存在,求出点M的坐标;若不存在,请说明理由.

22.将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=a,则CQ等于多少?(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之

间存在一个怎样的数量关系?.

23.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;

(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;

第5页(共7页)

(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)

24.如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;

(2)判断△MFN与△BDC之间的关系,并说明理由.

25.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;

(3)当AE=AC,AB=10时,求线段BO的长度.

26.如图,在矩形ABCD中,AD=4cm,AB=m(m>4),点P是AB边上的任意一点(不与点A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q.

(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示);

(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.

第6页(共7页)

27.如图,在矩形ABCD(AB<AD)中,将△ABE沿AE对折,使AB边落在对角线AC上,点B的对应点为F,同时将△CEG沿EG对折,使CE边落在EF所在直线上,点C的对应点为H.

(1)证明:AF∥HG(图(1));(2)证明:△AEF∽△EGH(图(1));

(3)如果点C的对应点H恰好落在边AD上(图(2)).求此时∠BAC的大小

28.请完成下列的相似测试.如图,在△ABC中,AB=AC=4,D是AB上一点,且BD=1,连接CD,然后作∠CDE=∠B,交平行于BC且过点A的直线于点E,DE交AC于点F,连接CE.(1)求证:△AFD∽△EFC;(2)试求AE•BC的值.

29.如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1、4、25.则△ABC的面积是 .

30.如图,在△ABC中,∠B=90°,∠A=60°,AB=1,作等腰三角形△ACD,使∠CAD=30°,且点D和B位于AC异侧,连结BD交AC于点O(1)请在所给图形基础上画出符合要求的其中一个草图,并在图中找出相似三角形后说明理由(2)在(1)的条件下,求出AO长.

第7页(共7页)

因篇幅问题不能全部显示,请点此查看更多更全内容