爱玩科技网
您的当前位置:首页Electrochemical, optical and electrochromic properties of imine polymers

Electrochemical, optical and electrochromic properties of imine polymers

来源:爱玩科技网
SyntheticMetals159(2009)1034–1042

ContentslistsavailableatScienceDirect

SyntheticMetals

journalhomepage:www.elsevier.com/locate/synmet

Electrochemical,opticalandelectrochromicpropertiesofiminepolymerscontainingthiopheneandcarbazoleunits

˙smetKaya,FatmaBaycanKoyuncu,EyupOzdemir∗SermetKoyuncu∗,I

DepartmentofChemistry,FacultyofSciencesandArts,C¸anakkaleOnsekizMartUniversity,TR-17020C¸anakkale,Turkey

articleinfoabstract

Newiminepolymerscontainingthiopheneandcarbazolemoietyweresynthesizedbyusingbothchem-icallyoxidativeinthepresenceofFeCl3andelectrochemicallyoxidativeprocess.WhileUV–vis,FT-IR,

1

H-and13CNMRtechniqueswereusedforthestructuralcharacterization,thenumber-averagemolec-ularweight(Mn),weight-averagemolecularweight(Mw)andpolydispersityindex(PDI)valuesweredeterminedbysizeexclusionchromatography(SEC).Thehighestoccupiedmolecularorbital(HOMO),

󰀇

thelowestunoccupiedmolecularorbital(LUMO)energylevels,electrochemical(Eg)andopticalbandgap(Eg)valueswerecalculatedbyusingtheresultsofcyclicvoltammetryandUV–visabsorptionspec-troscopymeasurements,respectively.Spectroelectrochemicalmeasurementswerecarriedoutagainstthechangesintheopticalpropertiesofconductingpolymersuponvoltagechanged.Alsotheyellowcoloroffilmchangedtogreencolorwithappliedpotential.Conductivitiesofthesepolymersweredeterminedbyusingfour-pointprobetechnique.Itwasseenthattheconductivitieswereincreasedbyiodinedoping.

©2009ElsevierB.V.Allrightsreserved.

Articlehistory:

Received27October2008

Receivedinrevisedform5January2009Accepted15January2009

Availableonline20February2009Keywords:

ConductingpolymersIminepolymersCarbazoleThiophene

1.Introduction

Iminepolymers,including–CHNlinkageinthebackbone,areusedinvariousfieldsbecauseoftheirelectronstructureproper-ties[1].–CHN–groupisisoelectronicwiththe–CHCH–groupinthesepolymersandtheincorporationofnitrogenatomsintotheconjugatedsystemisanotherapproachtoformclassesofmaterialswithequallyinterestingelectronicandopticalproper-ties[2].Recently,conductingiminepolymershavebeenusedinwiderangeofpracticalapplicationsinseveralareassuchaslightemittingdiodes,thinfilmtransistors,electrochromicdevicesandphotovoltaiccells[3–5].Also,theywereusedtopreparecom-positeswithresistancetohightemperature,thermostabilizations,graphitematerials,epoxyoligomer,andblockcopolymers,photre-sistantandantistaticmaterials[6,7].Electricalandelectrochemicalpropertiesandthermalstabilityofthesepolymerswillestablishtheindustrialapplicabilityofthesematerials.Also,manyofthesepolymersformmesophasesonheating[8].Thistypeofmate-rialhasdrawbackssuchaslowsolubilityincommonorganicsolventsandhigh-meltingtemperature,whichmakesitsprocess-ingdifficult.Howeverseveralapproacheshavebeenundertakentoimprovetheprocessabilityofconjugatedpolyazomethinesbyintroducingvariousalkylsubstitutedaromaticringsinthemain

∗Correspondingauthor.Tel.:+902862180018;fax:+902862180533.E-mailaddresses:sermetkoyuncu@hotmail.com(S.Koyuncu),eozdemir@comu.edu.tr(E.Ozdemir).

0379-6779/$–seefrontmatter©2009ElsevierB.V.Allrightsreserved.doi:10.1016/j.synthmet.2009.01.024

chain[9,10],byusingmonomerscontainingcertainheterocyclicunitssuchasthiophene[11–14],selenophene[15],oxadiazole,thiadiazole[16],pyridine[17],diphenylfluorene[18]andothers.Copolymerswithphenyl-substitutedquinoxalineringsprovedtobeverybeneficial[19,20].Dendriticphenyl-azomethinessupplyagoodsolution,becauseoftheirframeworksaroundvariousfunc-tionalcores[21,22].

Polythiophenesareimportantrepresentativeclassofconju-gatedpolymersthatformsomeofthemostenvironmentallyandthermallystablematerialsthatcanbeusedaselectricalconduc-tors,nonlinearopticaldevices,polymerLEDs,electrochromicorsmartwindows,photoresistant,antistaticcoatings,sensors,bat-teries,electromagneticshieldingmaterials,artificialnosesandmuscles,solarcells,electrodes,microwaveabsorbingmaterials,newtypesofmemorydevices,nanoswitches,opticalmodulatorsandvalves,imagingmaterials,polymerelectronicinterconnects,nanoelectronicandopticaldevices,andtransistors[23–28].Alotofinterestincarbazolecontainingpolymerswascausedbythediscoveryofphotoconductivityinpoly(N-vinylcarbazole)(PVK)byHoegl[29].Thesepolymershavevarioususefulproperties;suchaseasilyformsrelativelystableradicalcations(holes),high-chargecarriermobilities,andhighthermalandphotochemicalstability.Furthermorethesepolymersconstituteanimportantpartofphoto-conductivepolymersmuchattentionispaidtothecarbazole-basedcompoundsinthestudiesreviewingphotoconductivepolymersandorganicphotoreceptors[30–34].

Althoughdirectly[35]andvinyl[36]coupledcarbazole-thiophenepolymerswerealsosynthesizedearlier,thisreport

S.Koyuncuetal./SyntheticMetals159(2009)1034–10421035

highlightsonlythesecondiminecoupledcarbazole-thiophenepolymers[37].Thesepolymersweresynthesizedfrombothoxida-tivepolymerizationbyusingFeCl3asanoxidizingagentandelectrochemicalpolymerizationbygalvanostictechniques.Elec-trochromicswitchingofpolymerfilmpreparedviaelectrochemicalpolymerizationwereinvestigatedbydoublestepchronoamperom-etryandUV–visspectroscopy.Alsoelectrochemical(E󰀇g

)andopticalbandgaps(Eg)ofmonomersandpolymerswerecalculatedfromtheresultofcyclicvoltammetryandUV–visspectroscopy,respectively.Conductivitymeasurementswerecarriedoutbyelectrometerandcalculatedbyusingfourpointprobetechnique.Sizeexclusionchro-matography(SEC)wasusedformolecularweightdeterminationofthesepolymers.2.Experimental2.1.Materials

Carbazole,2-thiophenecarboxaldehyde,bromoethane,1-bro-mobutane,1-bromohexane,1-bromododecane,tetrabutylam-moniumhexafluorophosphatewaspurchasedfromAldrich.Hidraziniumhydroxide,aceticanhydride,aceticacid,dimethyl-formamide,dimethylsulfoxide,methanol,chloroform,acetonitrile,toluene,tetrahydrofuranpurchasedfromMerck.Potassiumhydroxide,copper(II)nitrate-hemipentahydrate,18-Crown-6,andpalladiumonactivatedcarbon(10%,w/w)werepurchasedfromFluka.Wholechemicalsusedwithoutfurtherpurification.

Althoughtherearesomereferencesaboutthesynthesisof9H-N-alkylcarbazole(9-NAC),3,6-dinitro-9H-N-alkylcarbazole(3,6-DN-9-NAC)and3,6-diamino-9H-N-alkylcarbazole(3,6-DA-9-NAC),theproceduresusedforthesesynthesesareslightlydifferent(byusingdifferentreagentorcondition)[38–41].2.2.Synthesisof9H-N-alkylcarbazole(9-NAC)

Carbazole(10mmol),KOH(15mmol)and18-Crown-6(10mg)asphasetransfercatalysiswereaddedto20mloftolueneandrefluxedfor30min.Thesolutionof1-bromoalcane(bromoethane,1-bromobutane,1-bromohexane,1-bromododecane)(15mmol)compoundsin10mltoluenewereslowlyaddedtothereactionmixture.Themixturewasstirredat110◦Cfor6handthencooledtotheroomtemperature.Then,thereactionmixturepouredintothe150mlofethanolandstrippedoffbyarotaryevaporator.Theproductwasrecrystallizedfrommethanolanddriedinvacuumdesiccators.Yield:9-N-ethyl-Carb:88%;9-N-butyl-Carb:84%;9-N-hexyl-Carb:76%;9-N-dodecyl-Carb:54%.

UV–vis(󰀂max)(MeOH):236,261,233and330nm.FT-IR(cm−1):(C–Haromatic)3048;(C–Haliphatic)2911,2845;(CCphenyl)1593,1484,1451;1HNMR(CHCl3-d):ıppm,8.16(s,d,2H,Ar-Haa󰀇);7.65(d,2H,Ar-Hdd󰀇);7.55(t,2H,Ar-Hbb󰀇);7.28(s,2H,Hcc󰀇);4.38(t,2H,–N–CH2–);1.94–1.27(CHaliphatic;forN-butyl-Carb,N-hexyl-Carb,N-dodecyl-Carb),0.92(d,3H,R–CH3).13CNMR(CHCl3-d):ıppm,141(C1);108(C2);126(C3);117(C4);119(C5);123(C6);44(N–CH2);34–21(N–CH2–(CH2)n);14(CH2–CH3)(Scheme1).

2.3.Synthesisof3,6-dinitro-9H-N-alkylcarbazole(3,6-DN-9-NAC)

Cu(NO3)2·2.5H2O(20mmol)wasaddedintoamixtureofaceticacid(15ml)andaceticanhydride(30ml)atroomtemperature.Themixturewasstirredfor10min,andthenN-alkylcarbazole(18mmol)wasslowlyaddedtothissolution.After5min,10mlofaceticacidwasaddedtothereactionmixture.Themix-turewasfurtherstirredatthistemperaturefor45minandthenpouredintodistilledwater(500ml).Theyellowprecipitate

Scheme1.

wascollectedbyfiltration,washedwithwater(300ml×3)anddriedat60◦Cundervacuum.Yield:3,6-dinitro-N-ethyl-Carb:94%;3,6-dinitro-N-butyl-Carb:96%;3,6-dinitro-9-N-hexyl-Carb:82%;3,6-dinitro-N-dodecyl-Carb:78%.

UV–vis(󰀂max)(MeOH):230,265,292and365nm.FT-IR(cm−1):(C–Haromatic)3090–3063;(C–Haliphatic)2920,2850;(–NO2),1512,1312;(CCphenyl)1601,1473,436;1HNMR(CHCl3-d):ıppm,9.18(s,2H,Ar–Hcc󰀇);8.59(d,2H,Ar–Hbb󰀇);7.61(d,2H,Ar–Haa󰀇);4.41(t,2H,–N–CH2–);1.94–1.22(CHaliphatic;forbutyl-Carb,N-hexyl-Carb,N-dodecyl-Carb),0.92(d,3H,R-CH3).13CNMR(CHCl3-d):ıppm,147(C1);109(C2);127(C3);144(C4);116(C5);124(C6);43(N–CH2);34–21(N–CH2–(CH2)n);14(–CH2–CH3)(Scheme2).

2.4.Synthesisof3,6-diamino-9H-N-alkylcarbazole(3,6-DA-9-NAC)

Pd/C(10%,w/w)(0.01g)wasaddedtothesolutionof3-6-dinitro-9-N-alkylcarbazole(15mmol)in200mlofethanolatroomtemperature.Thenthemixturewasheatedtorefluxtempera-turefor10min.10mlofhydraziniumhydroxidein30mlethanolwasthenaddedtothesolutionasdropwisefor45min.Themix-turewasstirredat40◦Cfor24handthenthePd/Cwasfilteredoff.Ethanolwasstripedbyrotaryevaporatorandremainingsolidwascrystallizedontoluenetwotimes.Thesolidwasdriedat50◦Cundervacuum.Yield:3,6-diamino-N-ethyl-Carb:68%;3,6-diamino-N-butyl-Carb:66%;3,6-diamino-9-N-hexyl-Carb:62%;3,6-diamino-N-dodecyl-Carb:58%.

UV–vis(󰀂max)(MeOH):232,273,288and317nm.FT-IR(cm−1):(–NH2)3387,3291;(C–Haromatic)3049,3018;(C–Haliphatic)2918,2849;(CCphenyl)1579,1496,1474;1HNMR(CHCl3-d):ıppm,7.41(s,2H,Ar–Hcc󰀇);6.(d,2H,Ar–Hbb󰀇);7.18(d,2H,Ar–Haa󰀇);4.38(t,2H,–N–CH2–);3.71(broad,2H,–NH2)1.96–1.21(C–Haliphatic;forbutyl-Carb,N-hexyl-Carb,N-dodecyl-Carb),0.92(d,3H,R–CH3).13CNMR(CHCl3-d):ıppm,147(C1);109(C2);127(C3);144(C4);116(C5);124(C6);43(N–CH2);34–21(N–CH2–(CH2)n);14(CH2–CH3)(Scheme3).

Scheme2.

1036S.Koyuncuetal./SyntheticMetals159(2009)1034–1042

Scheme3.

2.5.Generalprocedureforsynthesisof

9-alkyl-N,N󰀇-bis-(2-thienylmethylene)-9H-carbazole-3,6-diamine(TCs)

9-Alkyl-N,N󰀇-bis-(2-thienylmethylene)-9H-carbazole-3,6-diamine(TCs)werepreparedfromthecondensationof2-thiophenecarboxaldehyde(20mmol)with3,6-diamino-9-N-alkylcarbazole(10mmol)inmethanol(25ml)achievedbyboilingthemixtureunderrefluxfor3hat70◦C.Theprecipitatewascollectedbyfiltration,re-crystallizedfromn-heptaneandthendriedinvacuumdesiccator.Yield:TC-1:88%;TC-2:82%;TC-3:75%;TC-4:69%.

UV–vis(󰀂max)(CHCl3):232,292and366nm.FT-IR(cm−1):(C–Haromatic)3098,3068;(C–Haliphatic)2921,2840;(–CHN–,imine),1611;(CCphenyl)1570,1479,1423;1HNMR(CHCl3-d):ıppm,8.(s,2H,–CHN–);8.02(d,2H,Ar-Haa󰀇);7.68(d,2H,Ar–Hcc󰀇);7.62(d,2H,Ar–Hff󰀇);7.58(t,2H,Ar–Hbb󰀇);7.41(d,2H,Hdd󰀇);7.18(t,2H,Hee󰀇);4.38(t,2H,–N–CH2–);1.96–1.21(C–Haliphatic;butyl-Carb(TC-2),N-hexyl-Carb(TC-3),N-dodecyl-Carb(TC-4));0.92(d,3H,R–CH3).13CNMR(CHCl3-d):ıppm,151(–CHN–),144(C1);108(C2);116(C3);139(C4);121(C5);114(C6);123(C7);132(C8);127(C9);130(C-10);43(N–CH2);34–21(N–CH2–(CH2)n);14(CH2–CH3)(Scheme4).

2.6.Generalprocedureforoxidativepolymerizationof

9-alkyl-N,N󰀇-bis-(2-thienylmethylene)-9H-carbazole-3,6-diamine(poly-TCs)

AnhydrousFeCl3(0.4g,2.5mmol)issuspendedin50mlofdryCHCl3underargonatmosphere,towhichsolutionofiminemonomers(TC)(5mmol)in20mlofdryCHCl3wasaddeddropwiseunderfaststirring.Themixturestirredfor24hatroomtemperatureandthen50mlCHCl3wasaddedtothissolutionandpouredinto200mlmethanolandtheblackprecipitatewasfiltered.Theprecipi-tatewasthenimmersedintoa1%(v/v)solutionofthehidraziniumhydroxideinmethanolandstirredfor12h.Thepolymerwasfil-

Scheme4.

tered,washedwithmethanoltreetimesanddriedundervacuumat70◦Covernight.Yield:poly-TC-1:68%;poly-TC-2:66%;TC-3:58%;TC-4:49%.

UV–vis(󰀂max)(CHCl3):248,274and386nm(forTC-1).FT-IR(cm−1):(C–Haromatic)3104,3042;(C–Haliphatic)2921,2840;(–CHN–,imine)1618;(CCphenyl)1599,1467,1386;1HNMR(CHCl3-d):ıppm,8.86(s,2H,–CHN–);8.02–6.88(m,10H,C–Haromatic),4.34(br,2H,–N–CH2–),1.96–1.21(C–Haliphatic;N-butyl-Carb(poly-TC-2),N-hexyl-Carb(poly-TC-3),N-dodecyl-Carb(poly-TC-4)),0.92(d,3H,R–CH3).13CNMR(CHCl3-d):ıppm,154(–CHN–);144–112(C,aromatic);45(N–CH2);36–19(N–CH2–(CH2)n);14(CH2–CH3)(Scheme5).2.7.Electrochemicalmeasurements

ElectrochemicalpropertiesofTCmonomersandpolymersweredeterminedbyCHinstruments660Bcyclicvoltammetry.Theelec-trochemicalcellconsistofanAgwireasreferenceelectrode(RE),Ptwireascounterelectrode(CE)andglassycarbonworkingelectrode(WE)immersedin0.1MTBAPF6assupportingelec-trolyte.Theexperimentswerecarriedunderargonatmosphere.Thepotentialswerecalibratedaccordingtotheferroceneredoxcou-pleE◦(Fc/Fc+)=+0.41Vvs.Ag/Ag+.TheelectrochemicalHOMOandLUMOenergygaps(Eg)ofthesecompoundswerecalculatedfromtheiroxidationandreductiononsetvalues[26].2.8.Electricalmeasurements

ConductivitymeasurementswerecarriedoutbyaKeithley2400electrometer.Thepelletswerepressedonhydraulicpressdevelop-inguptoabout1.70×103kg/cm2.Iodinedopingwascarriedoutbyexposureofthepelletstoiodinevaporatatmosphericpressureandroomtemperatureinadesiccator[15].2.9.Opticalmeasurements

UV–visabsorptionspectraweremeasuredbyPerkinElmerLambda25.TheabsorptionspectraofthesecompoundswererecordedinCHCl3(liquidphase)orITO/glasstransparentfilm(solidphase).Theopticalbandgaps(Eg)ofmonomericandpolymericcompoundswerecalculatedfromtheirabsorptionedges[27].

WeusedthedataobtainedfromUV–visspectraandcyclicvoltammetryforspectroelectrochemicalmeasurementsofpoly-TC-1moleculesonITO/glasstransparentfilm[28].Thesemea-surementswerecarriedouttoconsiderabsorptionspectraofthispolymerfilmunderappliedvoltage.Thespectroelectrochemicalcellincludesaquartzcuvette,anAgwire(RE),Ptwirecounterelec-trode(CE)andITO/glassastransparentworkingelectrode(WE).Thesemeasurementswerecarriedoutinthe0.1MTBAPF6assup-portingelectrolyteinCH3CN.

2.10.Solubilityandcharacterizationtechniques

SolubilitytestresultsofsynthesizedcompoundsareshowninTable1.FT-IRspectrawererecordedbyaPerkinElmerFT-IRSpec-trumOnebyusingATRsystem(4000–650cm−1).1H-and13CNMR(BrukerAvanceDPX-400)datarecordedat25◦CbyusingCHCl3-dassolventandTMSasinternalstandard.ThermaldatawereobtainedbyusingPerkinElmerDiamondThermalAnalysisinstrument.TheTGAmeasurementswereperformedbetween20and1000◦C(inN2,rate10◦C/min).Thenumber-averagemolecularweight(Mn),weight-averagemolecularweight(Mw)andpoly-dispersityindex(PDI)valuesweredeterminedbysizeexclusionchromatography(SEC)techniqueoftheShimadzuCo.ForSECinvestigationsweusedanSGX(100Åand7nmdiameterload-ingmaterial)3.3mmi.d.×300mmcolumn;eluent:DMF/methanol

S.Koyuncuetal./SyntheticMetals159(2009)1034–10421037

Scheme5.

Table1

Solubilityofsynthesizedcompounds(0.05gin10ml).a.CompoundsTC-1TC-2TC-3TC-4

Poly-TC-1Poly-TC-2Poly-TC-3Poly-TC-4

a

NMP+/++/++/++/++/++/++/++/+

DMSO+/++/++/++/++/++/++/++/+

DMF+/++/++/++/++/++/++/++/+

Ethylacetate+/++/−+/++/+−/+−/++/++/+

CHCl3+/++/++/++/++/++/++/++/+

Acetone+/++/++/++/+−/+−/++/++/+

CH3OH+/++/−+/−+/+−/−−/−−/+−/+

CH3CN+/++/++/++/++/++/++/++/+

Toluene−/+−/++/++/+−/−−/−−/+−/+

Hexane−/−−/++/++/+−/−−/−−/−−/+

+/+:solubleatroomtemperature;−/+:solubleatheating;−/−:insoluble.

(v/v,4/1,0.4ml/min),polystyrenestandardsandarefractiveindexdetectorat25◦C.

3.Resultsanddiscussion3.1.Synthesisandcharacterization

Iminemonomerscontaining9-N-alkylcarbazole(9-NAC)andthiophenemoiety(TCs)weresynthesizedinfoursteps(Scheme1).First,9-NACderivativeswerepreparedbyalkylationofcarbazoleintoluenesolutionusingn-alkylbromidecompoundsinthepresenceofKOHand18-Crown-6.ThesecompoundswerethendinitratedusingCu(NO2)2·2.5H2Oinamixtureofaceticacidandaceticanhy-dride(v/v,1:2).Inthethirdstep,dinitrocompoundswerereducedbyusingPdonactivatedcarbon(Pd/C)andhydraziniumhydroxide(N2H4OH).Finally,iminemonomerscontainingthiopheneandN-

alkylcarbazole(TC-1,TC-2,TC-3,TC-4)derivativesweresynthesizedbythecondensationreactionof3,6-diamino-9-N-alkylcarbazole(3,6-DA-9-NAC)compoundsand2-thiophenecarboxaldehyde.Synthesizedcompoundswerepurifiedbycolumnchromatographyandre-crystallizationfromn-heptane.OxidativepolymerizationoftheseproductswascarriedoutbyusinganhydrousFeCl3indrychloroformunderargonatmosphereatroomtemperaturefor48h.ForthereductionofexcessofFe3+ionstoFe2+thatwouldbeeliminatedinafurtherstep,theprecipitateimmersedintoa1%(v/v)solutionofthehydrazineinmethanolwasstirredfor12h.Theyieldsofpolymerswerefoundtobebetween68%,66%,58%and49%,respectively.Accordingtothesolubilitytestresults,itwasseenthatwholepolymersweresolubleinpolarsolvents,suchasNMP,DMSO,DMF,CHCl3andCH3CN.Thesepolymerswerepartlysolubleinacetone,ethylacetate,tolueneandmethanolbyincreasingofthealkyllengthonthecarbozylnitrogen.Thismeans

1038S.Koyuncuetal./SyntheticMetals159(2009)1034–1042

Fig.1.FT-IRspectraof(a)TC-4,(b)poly-TC-4.

thatthedistancebetweenpolymerchainswillincreasebecauseofstericeffectandthebiggerflexibilityofthealiphaticchainsarisingfromtheincreasingofthealkyllengthandsolubilityofthepolymerswillimprove.Finally,poly-TC-3andpoly-TC-4aremoresolublethanothersynthesizedpolymers.

Aftercompletionofthesyntheticworks,allcompoundswerecharacterizedbyFT-IR,1H-and13CNMR.Therearesignificantchangesinthespectralpropertiesoftheinitialcompoundsandtheproducts.Whilesomeofthesignalsweredisappeared,somenewoneswereappeared.InFT-IRspectrumof9-NACderiva-tives,aliphaticC–Hvibrationwasobservedat2911and2845cm−1.Furthermore,characteristicN–Hvibrationat3412cm−1forsec-ondaryamineswasremovedbysubstitutedwithalkylgroups.InFT-IRspectraofthe3,6-DN-9-NAC,occurred–NO2boundsvibra-tionswereobservedat1512and1312cm−1.Alsocharacteristic–NH2vibrationsobtainedfromreductionof3,6-DN-9-NACwasclearlyobservedat3387and3291cm−1inthesespectra.Finally,inFT-IRspectraofTC-1,TC-2,TC-3andTC-4synthesizedfromthecondensationreactionof2-thiophenecarboxaldehydewith3,6-DA-9-NACderivatives,presentedtheiminebond(–CHN–)vibrationat1607cm−1.Also–NH2boundsattributedto3,6-DA-9-NACcom-poundsweredisappeared(Fig.1).

MolecularstructureofTCmonomersandpolymerswerealsoidentifiedfromtheir1H-and13CNMRspectrarecordedinCHCl3-d.1HNMRspectraofTC-2andpoly-TC-2wereshowninFig.2.Whilecharacteristicimineprotonssignalwereobservedat8.ppm,aro-maticprotonssignalswereobservedbetween8.02and7.18ppm.Sincenitrogenisanelectronegativeatom,N–CH2protonswereobservedathigherppmthanotheraliphaticprotons.Furthermore,–CH3endgroupwereobservedat0.92ppmasexpected.Attheendofthepolymerization,wholeprotonssignalsbroadenedandslightlyshifted.Finally,theseresultsindicatethatallreactionswerecompletedsuccessfully.

SECanalysesofpoly-TC-1,poly-TC-2,poly-TC-3andpoly-TC-4synthesizedfromoxidativepolymerizationwereperformedat30◦CusingDMF/MeOH(v/v,4/1)aseluentataflowrateof0.4ml/min.Mn,Mw,andPDIvalueswerecalculatedaccordingtoapolystyrenestandardcalibrationcurveandaregiveninTable2.

Table2

Thenumberaveragemolecularweight(Mn),massaveragemolecularweight(Mw),polydispersityindex(PDI)valuesofTCpolymers.CompoundsMnMwPDIPoly-TC-19,65011,2001.161Poly-TC-211,10012,5501.131Poly-TC-312,20014,4001.180Poly-TC-4

11,700

15,100

1.291

Fig.2.

1

HNMRspectraof(a)TC-2,(b)poly-TC-2.

AccordingtoSECanalysis,wholeTCpolymersshowonlyonepeakinthesechromatograms.Thesepolymerscontainabout20–25repeat-ingunitsandshownarrowmolecularweightdistribution.Thus,PDIvaluesofpoly-TC-1,poly-TC-2,poy-TC-3andpoly-TC-4werefoundtobe1.161,1.131,1.180and1.261,respectively.3.2.Opticalandelectrochemicalproperties

TheUV–visspectrawererecordedinliquid(solution:CHCl3)andsolidphase(ITO/glasssurface)(Fig.3).ElectronicabsorptionandopticalbandgapdataofTCmonomersandpolymerswereshowninTable3.TCmonomersandpolymersshowedmulti-absorptionpeakattributedto␲→␲*andn→␲*transitionofthethiophene,carbazoleandiminegroups.Fig.3showsthattheabsorptionmaximum(󰀂max)ofpoly-TC-1exhibitsa20nmredshiftascomparedtoTC-1.Thisshiftwasalsoobservedforthebandgap.Whilethelow-energyedgeoftheabsorptionspectrumofTC-1isat438nm,whichcorrespondstobandgapof2.83eV,forpoly-TC-1theabsorptiononsetis465nmcorrespondingtoabandgap(Eg)of2.67eV.The󰀂maxand󰀂onsetvaluesarelowerthaninsolidphase,becauseoftheabsenceof󰀃starkingofpoly-TC-1insolution.Due

Fig.3.AbsorptionspectraofTC-1[(a)inchloroformsolution]andpoly-TC-1[(b)inchloroformsolutionand(c)onITO/glasssurface].

S.Koyuncuetal./SyntheticMetals159(2009)1034–1042

Table3

󰀇

)andopticalbandgaps(Eg)valuesofTCmonomersandpolymers.HOMOandLUMOenergylevels,electrochemical(EgCompounds

Reducedgroupsandpeak

potentials(V)–HCN–(imine)Oxidizedgroupsandpeakpotentials(V)Thiophene(ring)Carbazole(ring)HOMO(eV)

LUMO(eV)

Electrochemical

󰀇

)(eV)bandgap(Eg

1039

Opticalband

gap(Eg)(eV)

TC-1−1.96+1.68+1.17TC-2−1.99+1.68+1.18TC-3−2.02+1.69+1.21TC-4

−2.16+1.71+1.24Poly-TC-1−1.81+1.54+0.94Poly-TC-2−1.82+1.55+0.95Poly-TC-3−1.84+1.56+0.96Poly-TC-3

−1.90

+1.58

+0.99

Fig.4.Cyclicvoltammogramof(a)TC-1and(b)poly-TC-1intheTBAPF6-acetonitrile,scanrate100mV/s,Ag-AgCl.

tosameaffect,alsowholeabsorptionbandsofthesolidphasebroadened.Finally,thebandgapwascalculatedas2.54eVforsolidphase.Basedontheintermolecularelectrontransfer,increasingofthelengthofalkylgroupsonthecarbozylnitrogen,theopticalbandgapchangedintherangeofbetween2.67and2.74eV.Incompari-sonwithelectrochemicalbandgaps,thevaluesarenotagreement.Itisshowsthattheelectroactivecentersandphotoactivecentersbehaveindependentfromeachothersforsynthesizedpolymers.

TheelectrochemicalpropertiesofTCmonomersandpolymers(TC-1,TC-2,TC-3andTC-4)wereinvestigatedbycyclicvoltam-metryandFig.4showstheCVvoltammogramoftheTC-1andpoly-TC-1.ThecyclicvoltammetrymeasurementswerecarriedoutinCH3CNsolutionatroomtemperatureand0.1MTBAPF6wereusedassupportingelectrolyte.Inthecathodicscanregion,TCandpoly-TCmoleculesshowonlyoneirreversiblereductionpotentials[39],whichreflectthereductionofimine(–CHN–)(Scheme6).Sincethereductionpotentialvaluesaresensitivetointramolecularandintermolecularelectrontransfer,theiminereductionpeakwasbroadenedandshiftedtohigherpotentialattheendofthepoly-merization.Becauseofthesameeffect,iminereductionpeakwerealsoinfluencedbyalkylgrouponthenitrogenatom,thereduc-tionpeakwasshiftedtolowerpotentialbyincreasinglengthofthe

Scheme6.

−5.33−2.592.742.83−5.36−2.602.762.85−5.41−2.622.792.87−5.56−2.2.922.94−4.99−2.812.182.67−4.99−2.812.182.67−5.01−2.812.202.69−5.08

−2.84

2.24

2.74

alkylchain.ThereactionmechanismcanbeproposedasshowninScheme6.

DuringanodicscanregionofwholeTC’s,twoirreversibleoxi-dationwaveswereobserved(Fig.4).ForTC-1molecule,thefirstoxidationpeakat+1.17Vcanbeattributedtocarbazoleoxidation,andthesecondoneat+1.68Vcanbeattributedtothiopheneoxi-dation[14].AlsotheothermoleculeshavesimilaroxidationwavesasshowninTable3.ThereactionmechanismcanbeproposedasshowninScheme7.

3.3.Electrochemicalpolymerizationandelectrochromicproperties

Heteroatomcontainingaromaticcompoundssuchaspyrrole,thiophene,furane,etc.canbeeasilyoxidizedanddepositedaselec-troactivepolymerfilmsontotheITO/glassWEsurfacebyrepeatedanodicscans[28].Sincepyrrole-iminecompoundshavealow-oxidationpotential(≈0.8eVagainstAg/Ag+electrode),theycanbeeasilypolymerizedbytheelectrochemicalprocess.Ontheotherhand,thiophene-iminederivativeshavinghigheroxidationpotential(≈1.6eV)needaco-momomersuchasthiopheneorpyr-role[42].Becauseofthisproperty,thiophenewasusedastheco-monomerforelectropolymerizationofTC-1.Thefirstandthesecondpeakattributedtooxidationofthecarbazylandthiophenemoietiesrespectivelyincreasewithrepeatinganodicscan.Thus,thesegroupsbecomemorerepeatedinthepolymerchains.Duetoaromaticconjugationbecomesmorepronouncedinthepoly-merbackbone,thesepeaksbroadenedandslightlyshiftedtolowerpotential.ElectropolymerizationofTC-1inthepresenceofthio-phenewasshowninFig.5andScheme8.

Fig.5.RepeatedpotentialscanofTC-1inthepresenceofthiopheneand0.1MLiClO4-NaClO4-acetonitrile,scanrate250mV/s.

1040S.Koyuncuetal./SyntheticMetals159(2009)1034–1042

Scheme7.

Scheme8.

Spectroelectrochemicalmeasurementinvestigatesthechangesinopticalpropertiesofconductingpolymersuponvoltagechange.Thesemeasurementsshowingtheformationofradicalcation(polaron)ofpoly-TC-1moleculeontheITO/glasspolymerfilmwerestudiedbyapplyingpotentialsrangingbetween0and+1.6Vinmonomerfreeacetonitrile/TBAHF6(0.1M)medium.Theappear-anceofbroadpeaksaround950nmcouldbeattributedtotheevolutionofpolaronbands.AscanbeseenfromFig.6,theyellowcoloroffilminneutralstatehaschangedtogreencolorbyappliedpotential.

Weextractedtheelectrochromicparametersofthepoly-TC-1filmsbyanalysisoftransmittancechangeatincreasingtheabsorp-tionbandat950nmwithrespecttotimewhilethepotentialbetween0and+1.6Vwasstepwiseswitchedbetweentheneutral

Fig.6.Spectroelectrochemicalmeasurementsofpoly-TC-1film.

S.Koyuncuetal./SyntheticMetals159(2009)1034–10421041

Fig.7.Electrochromicswitching,opticalabsorbancemonitoredforpoly-TC-1filmat950nm(0–1.6V).

andoxidizedstateswitharesidencetimeof10s.Doublepotentialstepchronoamperometrywascarriedouttoestimatetheresponsetimeofthepolymerfilm.Duringtheexperiment,the%transmit-tanceatthewavelengthofmaximumcontrastwasmeasuredbyusingaUV–visspectrophotometer.Theopticalcontrastmeasuredasthedifferencebetween%Tintheneutralandoxidizedforms(%󰀄T)werefoundtobe24%forpoly-TC-1(Fig.7).Furthermoretheswitchingtimewerecalculatedas3.4sforthispolymer.Takingtogethertheseresultssuggestthatpoly-TC-1filmsexhibitenoughpromisingelectrochromiccharacteristicunderaerobicconditions.3.4.Conductivity

Conductivityisrelatedtobothintermolecularandintramolec-ularelectrontransferonthepolymerbackbone.Thereforetheseresultshaveshownthatthedopantinteractswiththedoublebondinthepolymerbackboneandformsapolaronicstate(radicalcation)asanelectronistransferredfromthedoublebondtothedopantcre-atingaholeorapositivecarrieratthedoublebondsite.Theseholesorpositivecarriersareresponsiblefortheelectricalconductioninthesematerials[43].Conductivitymeasurementsofpoly-TC’swerecarriedoutwithanelectrometerusingafourpointprobetechnique.Fig.8showstheelectricalconductivitybehaviorresultsofpoly-TC-1,poly-TC-2andpoly-TC-3moleculesunderiodinedopinginvaryingperiodsat25◦C.Firstofall,conductivitiesofallTCpolymerswerefoundtobeapproximately10−10S/cmandthenanincrease

Fig.8.ChangeintheelectricalconductivitiesofTCpolymersduringtheprocessofiodinedoping(doneatatmosphericpressureand25◦C).

wasobservedafteriodinedoping.Althoughthesemoleculesaresimilartoeachother,conductivitymeasurementscarriedoutattheendofeachdopingperiod,poly-TC-3andpoly-TC-4showedlowerconductivitythanpoly-TC-1andpoly-TC-2.Thesedifferencesareassumedtobecausedbythedifferentalkylgroupswhichsubsti-tutedonthecarbozylnitrogen.Lengthofthesealkylgroupsaffecttointermolecularelectrontransfer.Sopoly-TC-3andpoly-TC-4having

Scheme9.

1042S.Koyuncuetal./SyntheticMetals159(2009)1034–1042

longeralkylchainintheirstructureshowlowerconductivitiesthanpoly-TC-1andpoly-TC-2.Also,thesealkylgroupshinderthecoor-dinationofI3−withnitrogen,becauseofthestericeffectexertedbythem.Sincenitrogenisaveryelectronegativeelementandiscapa-bleofcoordinatingwiththeI3−,Diazetal.suggestedaconductivitymechanismofimine(–CHN–)polymerswhendopedwithiodine[15].Furthermore,itisbelievedthatiodinedopingoccursnotonlyonthenitrogenatomsbutalsoonthethiopheneandcarbozylrings.TheconductivitymechanismoverthepolymerbackbonecanbeproposedasScheme9.4.Conclusion

ThesynthesisandpolymerizationofaseriesofiminecoupledTCmonomersbothoxidativepolymerizationusingFeCl3ascatalystandalsotheelectrochemicaloxidativepolymerizationingalvanos-taticconditionsisreported.Thesemoleculeswhichhavesimilarelectrochemicalandopticalpropertiesshoweddifferentelectri-calandthermalproperties.Poly-TC-3andpoly-TC-4didnotformstrongcoordinationwithiodineatomsbecauseofthepresenceoflongalkylgroupsoncarbozylnitrogen.Thus,afteriodinedoping,theconductivityofpoly-TC-3andpoly-TC-4wasnothigherthanofpoly-TC-1andpoly-TC-2.Thesealkylchainalsoinfluencedtheoxi-dationandreductionpotentialoftheTCmonomersandpolymers.Theseresultsmaypointthatallmoleculescanbeexperimentedinphoto-electronictechnologiesasholetransportmaterials(HTMs).Furthermore,theyellowcoloroffilmpreparedviaelectroxida-tiveprocessontheITO–glasssurfacehaschangedtogreencolorbyappliedpotential.Inaddition,spectroelectrochemicalmeasure-mentsshowedthatTP-1moleculeswereelectrochromicallystableontransparentITO–glasssurface.Thestableelectrochromismmaybeanadvantagefordesignofmolecularlyelectrochromicdevices.Acknowledgement

WegratefullyacknowledgethesupportsfromCanakkaleOnsekizMartUniversityGrantsCommission(ProjectNumber:2007/28).References

[1]M.Grigoras,C.O.Catanescu,Macromol.Sci.C:Polym.Rev.C44(2004)1.[2]M.Grigoras,N.C.Antonoaia,Polym.Int.54(2005)11.[3]C.J.Yang,S.A.Jenekhe,Chem.Mater.3(1991)878.

[4]C.J.Yang,S.A.Jenekhe,Macromolecules28(1995)1180.

[5]S.Tarkuc,E.Sahin,L.Toppare,D.Colak,I.Cianga,Y.Yagci,Polymer47(2006)

2001.

[6]P.W.Morgan,S.L.Kwolek,T.C.Pletcher,Macromolecules20(1987)729.[7]P.W.Wojtkonski,Macromolecules20(1987)740.

[8]J.Barbera,L.Oriol,J.L.Serrano,Liq.Cryst.12(1992)37.

[9]K.S.Lee,J.C.Won,J.C.Jung,Macromol.Chem.190(19)1547.

[10]S.B.Park,H.Kim,W.C.Zin,J.C.Jung,Macromolecules26(1993)1627.

[11]C.Wang,S.Shieh,E.LeGoff,M.G.Kanatzidis,Macromolecules29(1996)3147.[12]Y.A.Dubitsky,M.Catellani,A.Bolognesi,S.Destri,W.Porzio,Synth.Met.55

(1993)1266.

[13]S.C.Ng,H.S.O.Chan,P.M.L.Wong,K.L.Tan,B.T.G.Tan,Polymer39(1998)

4961.

[14]C.I.Simionescu,I.Cianga,M.Ivanoiu,A.Duca,I.Cocarla,M.Grigoras,Eur.Polym.

J.35(1999)587.

[15]F.R.Diaz,J.Moreno,L.H.Tagle,G.A.East,D.Radic,Synth.Met.100(1999)187.[16]Y.Saegusa,T.Takashima,S.Nakamura,J.Polym.Sci.A:Polym.Chem.30(1992)

1375.

[17]M.Misra,D.Das,K.B.Padhi,A.K.Panigrahi,A.K.Mohanty,J.Macromol.Sci.:Pure

Appl.Chem.A35(1998)867.

[18]K.H.Park,T.Tani,M.Kakimoto,Y.Imai,Macromol.Chem.Phys.199(1998)1029.[19]C.Hamcium,E.Hamcium,I.A.Ronova,M.Bruma,HighPerform.Polym.9(1997)

177.

[20]M.Bruma,B.Schulz,T.Töpnick,R.Dietel,B.Stiller,F.Mercer,V.N.Reddy,High

Perform.Polym.10(1998)207.

[21]M.Higuchi,S.Shiki,K.Ariga,K.Yamamoto,J.Am.Chem.Soc.123(2001)4414.[22]K.Yamamoto,M.Higuchi,S.Shiki,M.Tsuruta,H.Chiba,Nature415(2002)509.[23]Y.H.Pang,H.Xu,X.Y.Li,H.L.Ding,Y.X.Cheng,G.Y.Shi,L.T.Jin,Electrochem.

Commun.8(2006)1757.

[24]J.Hou,C.Yang,Y.Li,Synth.Met.153(2005)93.

[25]S.Thomas,C.Zhang,S.S.Sun,J.Poly.Sci.A:Poly.Chem.43(2005)4280.

[26]K.Colladet,M.Nicolas,L.Goris,L.Lutsen,D.Vanderzande,ThinSolidFilms451

(2004)7.

[27]E.S.Shaheen,D.Vangeneugden,R.Kiebooms,D.Vanderzande,T.Fromherz,F.

Padinger,C.J.Brabec,N.S.Sariciftci,Synth.Met.121(2001)1583.

[28]P.Wagner,P.H.Aubert,L.Lutsen,D.Vanderzande,Electrochem.Commun.4

(2002)912.

[29]H.Hoegl,O.Su,W.,Neugebauer,EUPatent(1957)1068115.[30]H.Hoegl,J.Phys.Chem.69(1965)755.

[31]J.V.Grazulevicius,P.Strohriegl,J.Pelichowski,K.Pelichowski,Prog.Polym.Sci.

28(2003)1297.

[32]M.Grigoras,M.C.Antonia,Eur.Poly.J.41(2005)1079.

[33]A.Kimoto,J.S.Cho,M.Higuchi,K.Yamamoto,Macromolecules37(2004)5531.[34]O.Stephan,J.-C.Vial,Synth.Met.106(1999)115.

[35]J.Cabai,K.Idzik,J.Soloducho,A.Chyla,Tetrahedron62(2006)758.

[36]Y.Liu,S.Xu,J.Li,Y.Xin,G.Zhao,B.Ye,S.Cao,Poly.Adv.Technol.19(2008)793.[37]F.C.Tsai,C.C.Chang,C.L.Liu,W.C.Chen,S.A.Jenekhe,Macromolecules38(2005)

1958.

[38]Y.Hayashi,S.Tazuke,Makromol.Chem.171(1973)57.

[39]C.Begnn,J.V.Grazulevicius,P.Strohriegl,J.Simmerer,D.Haarer,Macromol.

Chem.Phys.195(1994)2353.

[40]S.Watanabe,T.Yamamoto,M.Murata,Y.Masuda,HighPerform.Polym.13

(2001)281.

[41]C.P.Yang,R.S.Chen,C.C.Chang,ColoidPolym.Sci.278(2000)1043.[42]S.Andres,P.Guarin,W.G.Skene,Mater.Lett.61(2007)5102.

[43]H.Shirakawa,E.J.Louis,A.G.Macdiarmid,C.K.Chiang,A.J.Heeger,J.Chem.Soc.

Chem.Commun.16(1977)579.

因篇幅问题不能全部显示,请点此查看更多更全内容