爱玩科技网
您的当前位置:首页Modeling, optimization and computation for software verification

Modeling, optimization and computation for software verification

来源:爱玩科技网
Modeling,OptimizationandComputationfor

SoftwareVerification

MardavijRoozbehani1,EricFeron2,andAlexandreMegrestki3

mardavij@mit.edu,2feron@mit.edu,3ameg@mit.eduLaboratoryforInformationandDecisionSystems(LIDS),MassachusettsInstituteofTechnology,Cambridge,MA,U.S.A

1

Abstract.Modelingandanalysistechniquesarepresentedforreal-time,safety-criticalsoftware.Softwareanalysisisthetaskofverifyingwhetherthecomputercodewillexecutesafely,freeofrun-timeerrors.Thecriti-calpropertiesthatprovesafeexecutionincludebounded-nessofvariablesandterminationoftheprograminafinitenumberofsteps.Inthispa-per,dynamicalsystemrepresentationsofcomputerprogramsalongwithspecificmodelsthatarepertinenttoanalysisviaanoptimization-basedsearchforsysteminvariantsaredeveloped.Itisshownthattheauto-maticsearchforsysteminvariantsthatestablishthedesiredpropertiesofcomputercode,canbeformulatedasaconvexoptimizationproblem,suchaslinearprogramming,semidefiniteprogramming,and/orsumofsquaresprogramming.

1Introduction

Failureofreal-timecontrolsystems,suchasthoseusedinspacecrafts,satellites,multiplecoordinatingUVAs,automobilesandtherapymachinesmayleadtolossofhumanlifeorahugelossincapitalandproducts.However,safeoperationofthesesafety-criticalcontrolsystemsreliesheavilyontheembeddedsoftware.AccordingtoBoingCo.andHoneywellInc.,softwaredevelopmentaccountsfor60−80%oftheeffortspentonthedevelopmentofcomplexcontrolsystems,whilemuchofthiseffortisexpendedonvalidationandverificationofthesoftwareafterorduringitsdevelopment.

Whilereal-timesoftwaremustsatisfyvariousresourceallocation,timing,computationandperformanceconstraints,theveryleasttorequireisthatthesoftwaremustexecutesafely,freeofrun-timeerrors.Thecriticalsoftwareprop-ertiesthatmustbeverified/validatedforsafeexecutioninclude:(1)absenceofvariableoverflow,(2)absenceof‘arrayindexout-of-bounds’calls,and(3)termi-nationofthefunctionsandsub-functionsandifrequired,theprogramitselfinfinitetime.Someadditionalpropertiesthatmightbedesiredinareliable,safety-criticalsoftwareinclude:(4)robustnesstouncertaininputs,includingfeedbackfromanalogsystems,(5)validityofcertaininequalitiesrelatinginputsandout-puts,forinstance,passivityand(6)absenceof‘dead-code’.Softwareanalysis,isthetaskofverificationofsomeoralloftheaboveproperties.

PatrickCousot[5],[7],publishedoneofthemostnoteworthyresultsinthelit-eraturethatdealwithsoftwareanalysis.Themainmethodofverificationisbasedonthenotionofabstractinterpretationofcomputerprograms.Seealso[8],[17].Accordingto[5,6],abstractinterpretationisdefinedasanapproximateprogramsemanticsderivedfromthedomainofconcretesemanticoperationsbyreplacingitwithadomainofabstractsemanticoperations.Adrawbackassociatedwiththesemethodsistheintroductionofanarrowingorwideningoperator,whichoftencausesthemethodtogenerateweakinvariants,resultinginconsiderableconservatisminanalysis[4].Nevertheless,thesemethodsappeartobepracti-calfortheverificationoflimitedpropertiesofreal-time,safety-criticalsystemssuchaslarge-sizedavionicssystems.Alternativemethodsaimingatgeneratingstrongerstatementsabouttheevolutionofvariablesinsoftwaresystemsmightbefound,forexample,inthemodel-checkingliterature;however,thetrade-offoftenachievedbythesemethodsisthatofincreasedaccuracyandthegenerationofstrongerpropertiesofsoftware(orsoftwaremodel)variables,oftenatthecostofincreasedcomputationalrequirementsandlimitedscalabilitytolargesystems.Moreover,constructionoftheprogrammodelsoftencannotbefullyautomated.Recently,therehavebeenrenewedeffortsatestablishingpropertiesofsoftwaresystemsbythecombineduseofabstractionsor,better,bisimulationmechanisms,andapplyingcontroltheoreticprinciplestothem.Muchoftherelevantliteratureinthatregardmaybefoundintherecentfieldofhybridsystems[13].Seeforinstance[9].Ingeneral,itwasfoundthatmanymethodsdevelopedinsystemandcontroltheoryforsystemsdrivenbydifferentialequationswereinprincipleapplicabletohybridsystems,possiblyatthepriceofhavingtore-developsomeelementsoftheory,e.g.optimalcontroltheoryonhybridsystems[16,12,3]orcontrolofhybridsystemsusingbisimulations[15,14].

Inthispaperweintroduceasystemstheoreticapproachforsoftwareanalysis.Wepresentmodelingtechniquesthroughtheintroductionoflinear-likemodelsthatmayrepresentabroadrangeofcomputerprogramsofinteresttothispaper.Theseincludesingleflowprogramsandgainscheduledpiecewiselinearsystems,usedtocontrolphysicaldevicessuchasaerospacesystemsorautomotivecontrolsystems.Themainmethodofverificationisanoptimization-basedsearchforsysteminvariants.Wetherefore,suggestspecificLyapunov-likefunctions,whosepropertiesguaranteevariablebounded-nessaswellasotherdesiredproperties,suchasguaranteedprogramtermination.Wealsoshowhowthesearchforthesesysteminvariantsmaybeformulatedasaconvexoptimizationproblem,suchaslinearprogramming,semi-definiteprogrammingand/orasumsofsquaresprob-lem.Attheend,wesketchtheblock-wiseanalysisprocedureforimprovingthescalabilityoftheproposedmethodsasanalysisoflarge-sizecomputerprogramsisundertaken.

2AutomatedSoftwareAnalysis:Preliminaries

Inthissectionweintroducethefundamentalsofsoftwareanalysisthroughdy-namicalsystemmodels.Weconsidercomputerprogramsasdynamicalsystems

andintroducecertainLyapunov-likefunctionsascertificatesforthebehaviorofthesesystems.2.1

Computerprogramsasdynamicalsystems

Weviewacomputerprogramasadynamicalsystemwhichdefinestherulesforiterativemodificationofoperatingmemory,possiblyinresponsetoreal-timeinputs.Inparticular,weconsidermodelsdefinedingeneralbyastatespacesetXwithselectedsubsetsX0⊂XofinitialstatesandX∞⊂Xofterminalstates,andbyaset-valuedfunctionf:X→2X,suchthatf(x)⊂X∞,∀x∈X∞.ThedynamicalsystemS=S(X,f,X0,X∞)definedbyX,f,X0,X∞isunderstoodasthesetofallsequencesX=(x(0),x(1),...,x(t),...)ofelementsfromXsatisfying

x(0)∈X0,x(t+1)∈f(x(t))∀t∈Z+

(1)

s.t.f(x)⊂X∞,∀x∈X∞Theuncertaintyinthedefinitionofx(0)representstheprograms’sdependenceonparameters,andtheuncertaintyinthedefinitionofx(t+1)representsprogram’sabilitytorespondtoreal-timeinputs.Fromthisviewpoint,analysisofsoftwaremeansverificationofcertainpropertiesofsystem(1).InSection4,weelaborateonthedynamicalsystemsviewofcomputerprogramsandsuggestspecificmodelsthatareessentiallyequivalentto(1),yetaremoresuitableforanalysispurposes.Definition1.AcomputerprogramrepresentedbyadynamicalsystemS=S(X,f,X0,X∞)issaidtoterminateinfinitetimeifeverysolutionX=x(t)of(1)satisfiesx(t)∈X∞forsomet∈Z+.Inaddition,wesaythatthestatevariablesremainbounded(donotoverflow)if∀t∈Z+,x(t)doesnotbelongtoacertain(unsafe)subsetX−ofXforeverysolutionX=x(t)of(1).2.2

Lyapunovfunctionsasbehaviorcertificates

Definition2.ALyapunovfunctionforsystem(1)isdefinedtobeafunctionV:X→Rsuchthat

/X∞.V(x)<θV(x)∀x∈X,x∈f(x):x∈

whereθ∈R+isapositiveconstant.

Remark1.Theparameterθintheabovedefinition,isveryimportantinpro-vidingtheflexibilityrequiredfordesigningappropriateLyapunovfunctionsthat

establishfinite-timeterminationand/orbounded-ness.ForinstanceifV(x0)<0andθ≥1,(2)impliesthatVmuststrictlymonotonicallydecreasealongthetrajectoriesof(1)untiltheyreachaterminalstate.Aswewillseeinthesequel,thisissuitableforestablishingfinite-timetermination.However,withV(x0)<0andθ<1,Visnotrequiredtodecreasealongthetrajectoriesof(1),whileitremainsnegative.Thisisveryimportantinprovingabsenceofoverflowincom-puterprogramswithoutthefinite-timeterminationproperty.

(2)

TerminationinfinitetimeThefollowingTheoremprovidesausefulcriterionforverifyingfinite-timeterminationinsoftwareanalysis.

Theorem1.IfthereexistsaboundedfunctionV:X→R−,andaconstantθ>1satisfying

V(x)<θV(x)∀x∈X,x∈f(x):x∈/X∞.

thenaterminalstateX∞willbereachedinafinitenumberofsteps.

Proof.SinceVisbounded,thereexistsM∈R+,suchthat−M≤V(x)<0,

∀x∈X.Now,assumethatthereexistsasequenceX=(x(0),x(1),...,x(t),...)ofelementsfromXsatisfying(1)thatdoesnotreachaterminalstateinfinitetime.I.e.x(t)∈/X∞,∀t∈Z+.Then,V(x(t))<−Mfor

t>

logM−log|V(x(0))|

,

logθ(4)(3)

whichcontradictsbounded-nessofV.

AbsenceofoverflowWealreadysawthatabsenceofoverflowcanbechar-acterizedbyavoidanceofanunsafesubsetX−ofthestatespaceX.ConsideraLyapunovfunctionV,definedaccordingto(2).DefinethelevelsetsLr(V)ofV,by

Lr(V)={x∈X:V(x)Theselevelsetsareinvariantwithrespectto(1),inthesensethatx(t+1)∈Lr(V)wheneverx(t)∈Lr(V).Weusethisfact,alongwiththemonotonicitypropertyofV,toestablishaseparationbetweenthereachablesetandtheunsaferegionofthestatespace.

Theorem2.Considerthesystem(1)andletVdenotethespaceofallLyapunovfunctionsforthissystemsatisfying(2)withsomeθ≥1.AnunsafesubsetX−ofthestatespaceXcanneverbereachedalongallthetrajectoriesof(1)ifthereexistsV∈Vsatisfying

infV(x)≥supV(x)(5)

x∈X−

x∈X0

Inaddition,if

x∈X−

infV(x)≥0(6)

then,θ>0issufficient.

Proof.Theproofproceedsbycontradiction.Firstconsidertheθ≥1caseand

assumethat(1)hasasolutionX=(x(0),x(1),...,x(t−),...),wherex(0)∈X0andx(t−)∈X−.SinceV(x)isstrictlymonotonicallydecreasingalonganysolutionof(1),wemusthave:

x∈X−

infV(x)≤V(x(t−))x∈X0

(7)

whichcontradicts(5).Now,considerthecaseθ<1forwhichmonotonicityofVisnotalwaysimplied.PartitionX0intosubsetsX0andX0suchthatX0=X0∪X0and

V(x)≤0V(x)>0

∀x∈X0∀x∈X0

NotethateitherofX0andX0mayhappentobeempty.Now,assumethat(1)hasasolutionX=(x(0),x(1),...,x(t−),...),wherex(0)∈X0andx(t−)∈X−.Notethatbyassumption,V(x(t−))≥0andthus

V(x(t))>0

∀tV(x(t))isthereforestrictlymonotonicallydecreasingoverthesequencex(0)tox(t−).Hence,(7)mustholdwhichcontradicts(5).Finally,assumethat(1)hasasolutionX=(x(0),x(1),...,x(t−),...),wherex(0)∈X0andx(t−)∈X−.Inthiscase,wemusthaveV(x(t))≤0,∀t.ThisimpliesthatV(x(t−))<0,whichcontradicts(6).Proofiscomplete.

Now,weturnourattentiontodevelopmentofgeneralformsforsystemin-variantsthatestablishthedesiredpropertiesandareappropriateforuseinaconvexoptimizationframework.Amongseveralpropertiesofareliablesoftwarementionedearlier,absenceofoverflowandfinite-timeterminationareexpectedinmostapplications.

Theorem3.ConsiderthedynamicalsystemS=S(X,f,X0,X∞)definedby(1)andassumethatthereexistsareal-valuedfunctionV:X→Rsuchthat

V(x)<0∀x∈X0.

V(x)<θV(x)∀x∈X,x∈f(x):x∈/X∞.

°x°2°°

V(x)>°°−1∀x∈X.

M(8)(9)(10)

whereθ∈R+isaconstant,andnoconstraintonfinitenessofthestatespaceXisimposed.Then,everysolutionX=x(t)of(1)remainsboundedinthesaferegiondefinedby|xi|1,everysolutionX=x(t)reachesaterminalstateX∞infinitetime.

Proof.Notethat(8)and(9)implynon-positivityofV(x)onX\\X∞.Moreover,by(10),V(x)isboundedfrombelowby−1.Therefore,V(x)∈(−1,0).ByTheorem1,(9)impliesfinite-timetermination.Also,theunsaferegionX−isdefinedby|xi|≥M.Therefore,

°x°2°°

°°≥1,∀x∈X−,M

x∈X−

infV(x)=0≥0=supV(x)

x∈X0

Theorem2thencompletestheproof.

Remark2.ByimposingaquadraticformonV,thesearchforaLyapunov-likefunctionsatisfying(8)−(10)reducestosemidefiniteprogramming[1].Asanalternative,imposingalinearorpiecewiselinearformonV,alongwithreplacingcondition(10)with2nconstraints

xi

−1∀x∈X,i=1..nMxi

V(x)>−−1∀x∈X,i=1..n

MV(x)>

convertstheproblemoffindinganappropriatesysteminvarianttolinearormixedinteger/linearprogramming[2].AnotherpossibilityistoletVbeapoly-nomialfunctionofthestatevariablesxi.Inthiscase,thesearchforsysteminvariantsrestrictedtotheclassofpolynomialswithrealcoefficientscanbeformulatedasasumsofsquaresproblem[18],[19].

3ModelsofComputerPrograms

Inthissectionwedevelopspecificmodelsofsoftwarethatareconvenientforanalysispurposes.Practicalconsiderationssuchasconvenienceforautomatedparsing/compiling,availabilityofanefficientrelaxationtechniqueandcompat-ibilitywithaparticularnumericalengineforconvexoptimizationinfluencethechoiceofmodelinglanguage.3.1

Mixedinteger/linearsystems

WiththefollowingProposition,wefirstprovidethemotivation/intuitionbehindusingthismodelforsoftwaresystems.

Proposition1.Universalityofmixed-integerlinearmodels.Letfbeanyarbitrarypiece-wiseaffinefunctiondefinedonacompactstatespaceX,whichconsistsoffiniteunionsoffinitepolytopes.Then,fcanbedefinedprecisely,byimposinglinearequalityconstraintsonafinitenumberofbinaryvariablesandafinitenumberofanalogvariablesrangingoverboundedintervals.I.e.

ThereexistsmatricesFandH,suchthat

qr

f(x)={F[x;w;v;1]:s.t.∃w∈[−1,1],∃v∈{−1,1}s.t.H[x;w;v;1]=0}Proof.Theproofisbyconstruction.First,noticethatwithoutlossofgenerality

i=NSn

Xk,whereeachXiiswemayassumethatx∈[−1,1].Now,letX=definedbyafinitesetoflinearinequalityconstraints.I.e.

©ª

x≤b,k=1,...,NXi:=x|aTkiiki

i=1

(11)

x∈Xi,wheretheconstant2Notethatbydefinitionf(x)=2Aix+2Bi

appearsforconvenienceinnotationonly.Now,assignabinaryvariablevi∈

{−1,1},toeachXi,i=1...N−1,accordingtothefollowingrule,

vi=1⇐⇒x∈Xi,vi=−1⇐⇒x∈/Xi,i=1,...N−1

i=N−1Xi=1

(12)

vi=−N+1⇐⇒x∈XN,

Thenwehavef(x)=

N−1Xi=1

i=N−1Xi=1

vi=−N+3⇐⇒x∈/XN

(1+vi)(Aix+Bi)−(N−3)(ANx+BN)−

subjectto

N−1Xi=1

vi(ANx+BN),

Now,weneedtorelate(11)and(12),whichisdoneinthefollowingway;

¡¢

x∈Xi⇐⇒aTx−b(14)ki(vi+1)≤0,k=1,...,NikiSincebyassumption,eachXiisbounded,

x∈Xi

i=N−1Xi=1

vi≤−N+3,and(12),andvi∈{−1,1},i=1...N(13)

Rki:=minaTkix−bki

existsandisfinite.Therefore,theconditionx∈Xi,isequivalentto,

T

aTkixvi+akix−bkivi−bki−Rki(wki+1)=0,wki∈[−1,1],k=1,...,Ni(15)

Next,defineauxiliarystatevectorsyi:=xvi∈Rn.Noticethatyiisthemul-tiplicationofananalogvariablex,andabinaryvariablevi.Werepresentthis(nonlinear)transformationbyanaffinetransformationinvolvingauxiliaryanalogvariableszi∈[−1,1]n,andzi∈[−1,1]n,subjecttoasetoflinearconstraints,inthefollowingway,

yi=4zi−x−vi1n−1n,zi≤zi≥0,zi≤−vi1n,zi=

equivalently,

yi=4zi−x−vi1n−1n,i=1,..,N¢1¡1(vi+1)

zi+Wi+In1n=1n

22

¢1¡2

zi=Wi+In1n

2¢¡1

zi+Wi3+In1n=−vi1n

21

zi=(x−zi)

2(16a)(16b)(16c)(16d)(16e)

(vi+1)

1n21

(x−zi)2£¤T

zwv1,where¤Now,£letXe=xy1...ynz1...znz1...n¤£113

...wNn...wNnw=w11...wNNNw11,andv=v1...vn.Then,

#\"N−1

X£¤

Ai−(N−3)ANx+A1−AN...AN−1−ANyf(x):=

i=1

whereWikisdefinedby©kªk

Wik=diagwji,j=1,..,n,i=1,..,N,k=1,..,3,wij∈[−1,1]

(17)

+B1−BN...BN−1−BNv+

whichislinearinx,y,v.Moreover,(17)issubjecttoconstraints(13),(15),(16),whicharealllinearequalityconstraintsinXe.Thiscompletestheproof.Sofar,wehaveshownthatimposinglinearequalityconstraintsonBooleanvariablesandonanalogvariablesrangingoverboundedintervalsallowsonetodefinearbitrarypiecewiselinearfunctionsonfiniteunionsofpolytopes.Thisobservationservesasthebasisforintroducingthewidelyusedclassofmodelswhichwillbereferredtoasmixedinteger/linearsystemshere.Thesemodelsarecapableofprovidingrelativelybriefdescriptionsofcomplicateddependencies.Amixedinteger/linearsystemmodelhasstatespaceX⊂Rn.Itsstatetransitionfunctionf:X→2XisdefinedbytwomatricesF,Hofdimensionsn-by-(n+q+r+1)andp-by-(n+q+r+1),accordingto

f(x)={F[x;w;v;1]:

qr

∃w∈[−1,1],∃v∈{−1,1}s.t.H[x;w;v;1]=0}

NaturalLyapunovfunctioncandidatesformixedinteger/linearsystemsarequadraticfunctionals.Withinthisclass,checkingmonotonicityofLyapunovfunctionsalongsystemtrajectoriescanbedonebyapplicationofthetradi-tionalquadraticrelaxationtechniques,startingwiththoseusedinderivingtheboundsfortheMAX-CUTproblem,whichleadstosemidefiniteprogrammingastheLyapunovfunctiondesigntool.

SearchforLyapunovinvariantsusinglinearorsemidefiniteprogram-mingThissectiondetailsourapproachtocomputeLyapunovinvariantsformixedinteger/linearsoftwaremodels.LookingforafunctionVsatisfying(8)−(10),maybeseenaninfinite-dimensionalconvexprogrammingproblemintheunknownV.Thismaybesolvedbyfirstdefininganappropriate,finite-dimensionalparameterizationofVandthensolvingtheresultingfinite-dimensional,convexoptimizationproblem.

LinearparameterizationofquadraticLyapunovfunctionsappearas

∙¸T∙¸xx

V(x):=P

11

£¤

N−1Xi=1

Bi+(−N+3)BN

wherePisaconstant,symmetricmatrix.

FortheLyapunovinvariantparameterizationconsideredabove,theproblemoffindinganinvariantthatsatisfiestheconditions(8)−(10)isaboutsolvingasetofnonlinearconstraintsarisingfromtheseconditions.Theseconditionsareoftennon-convexconditions,whichmakestheirexactsolutionoftenimpractical,but,fortunatelyalsounnecessary.Instead,wewillfocusonusingrelaxedversionsoftheseconditions,whicharemucheasiertosolveusingeitherlinearorsemidefiniteoptimizationroutines.ThemaintoolusedtowardsobtainingtheserelaxationsisaLagrangianrelaxationprocedurealsoknownasS-procedure.

Forexample,thefirstofthethreeconditionsdoesnotrequiresuchaproce-dure,sinceitisalinearconstraintonthecoefficientsofP:Indeed,therequire-mentV(x(0))<0mayalsobewrittenas,

∙x(0)¸T

M1

P

∙x(0)¸

M1

<0.(18)

whereMistheoverflowlimit.Thesecondcondition,(9),maybewrittenas

∙F.[x(k)v(k)w(k)1]¸T

M1

P

∙F.[x(k)v(k)w(k)1]¸

M1

∙x(k)¸

M1

P

∙x(k)¸

M1

(19)

Theconstraintv∈{−1,1}isequivalenttothequadraticconstraint

vM1v−

T

rXi=1

foranyx(k),v(k),w(k)satisfying

£¤TqrH.x(k)w(k)v(k)1=0andw(k)∈[−1,1],v(k)∈{−1,1}

r

(20)

forarbitraryµi,1∈R,i=1,...r.Likewise,theconstraintw∈[1,1]isequiva-lentto

wTE1w−

qXi=1

©ªµi,1=0,withM1=diagµ1,1,µ2,1,...µr,1

q

forarbitraryηi,1>0,i=1,...q.FormulatingtheproperLagrangianrelaxation,condition(19)holdswhenevercondition(20)holdsifthereexistsP,M1,E1≥0andy1∈Rsx×nHsuchthat

TTTTTT

LT1PL1−θL2PL2(21)

where

ih

fwfvf1

HM:=[Mhxhwhvh1],FM:=fxMMM∙∙¸¸

FMIn0n×(sx−n)

L1:=,L2:=

01×(sx−1)101×(sx−1)1

L3:=[In+q0(n+q)×(r+1)],L4:=[0(r+1)×(n+q)Ir+1],L5:=[01×(sx−1)1]

©ª

ηi,1≤0,withE1=diagη1,1,η2,1,...ηq,1

Likewise,(10)maybewrittenas

∙x(k)¸T∙

M1

In00−1

¸∙x(k)¸

M1

<

∙x(k)¸T

M1

P

∙x(k)¸

M1

(22)

foranyx(k),v(k),w(k)satisfying

£¤T

H.x(k)w(k)v(k)1=0andw(k)∈[−1,1]q,v(k)∈{−1,1}r

(23)

Thuscondition(22)holdswhenevercondition(23)holdsifthereexistsP,M2,E2≥0andy2∈Rsx×nHsuchthat

TTTTTT

LT2P0L2−L2PL2(24)

Thus,absenceofoverflowandfiniteexecutiontimeareguaranteedifthereexistP,M1,M2,E1≥0,E2≥0,y1,andy2satisfyingconstraints(18,21and24).

3.2Linearsystemswithconditionalswitching

Inthismodelthestatespaceofthesystemisthedirectproduct

X={0,1,2,...,m}×Rn

={(k,v):k∈Z,0≤k≤m,v∈Rn}

ofadiscretesetandann-dimensionalEuclideanspace,X0={(0,v0)},X∞={m}×Rn.Theset-valuedstatetransitionmapf:X→2XisdefinedbymatricesAk,Bk,Lk,Gk,Hk,Ik,Ck,Dk,wherek∈{0,1,...,m−1},aswellasbyafunctionp:{0,1,...,m−1}→{0,1,...,m},accordingtothefollowingrule:

f(k,v)={(k+1,Akv+Bkw+Lk):w∈[−1,1]}whenCkv+Dk≤0andkf(k,v)={(p(k),Gkx+Hkw+Ik):w∈[−1,1]}

whenCkv+Dk>0andkInthismodel,thediscretecomponentkofthestatevectorx=(k,v)rep-resentsthe“currentlineofthecode”,whilevistherealstatevectorbeingprocessedandwrepresentsboundedreal-valuedinputdata.Alloperationsal-lowedareaffine,exceptfortheconditional“gotop(k)”statementsallowedoneveryline.Thismodelappearstobesuitableforprogramswithsimpleflow,aswellasreal-timeinteractionsbetweensimplelogicandgainscheduledlinearsystems.

NaturalLyapunovfunctioncandidatesforlinearsystemswithconditionalswitchinghavethepiecewisequadraticorpiecewiselinearformV(k,v)=σk(v),whereforeveryk∈{0,1,...,m}thefunctionσk:Rn→Risaquadraticoranaffinefunctional.

3.3Trigonometricpolynomialmodels

Themodelsdescribedintheprevioussectionsareonlycapableofdescribingpiecewiselineartransformationsofanalogvariables.Thisisnotalwaysconve-nient:forexample,multiplicationoftwoanalogstatevariablescanberepresentedthiswayonlyapproximatelyandthisrepresentationisparticularlycumbersome.Inordertocoveralargerclassofanalogoperations,thetrigonometricpolynomialmodelscouldbeuseful.

AtrigonometricpolynomialmodelhasstatespaceXwhichisaclosedsub-groupofapoly-thorusTn,whereTdenotestheunitcircleinthecomplexplane.Equivalently,onecanthinkofXasadirectproductofsetsoftheformTkor

q

Zkq,whereZqdenotesthesetofallcomplexnumberszsuchthatz=1.Theword“trigonometric”referstothenaturalparameterizations

T={cos(t)+jsin(t):t∈R}

oftheunitcircle.Thestatetransitionmapf:X→2Xisdefinedbyavectorpolynomialpwithrespectto2∗n+kcomplexvariables,accordingto

f(x)={y∈X:p(y,x,z)=0forsomez∈Tk}.

NaturalLyapunovfunctioncandidatesfortrigonometricpolynomialmodelsarereal-valuedtrigonometricpolynomials.CheckingvalidityofaLyapunovfunc-tioncandidatereducestoverificationofpositivityofatrigonometricpolynomialsubjecttoasetofpolynomialconstraints,whichcanbedoneusingtheShor’s“sumsofsquares”argument:Apolynomialispositiveifitcanberepresentedasasumofsquaresofpolynomials.Whileitisnottruethatapositivepolynomialcanalwaysberepresentedasasumofsquaresofpolynomials,itcanbeshownthattheequivalenceholdsinthecaseoftrigonometricpolynomials.

4ANumericalExample

Considerthefollowingprogram:

x1=0;x2=0;whilex2≤100,ifx1≥0,

x1=x1−a;else

x1=x1+b;end

x2=x2+1;end

wherea∈[100,900]andb∈[200,800],areuncertaininputparameters.Using2slackvariablesand1binaryvariable,amixedinteger/linearmodelofthispieceofcodeisdefinedbymatricesF,andH,givenas:

∙¸0

x(0)=,n=2,q=2,r=1.

0

¸¸∙∙MMbb−a

0−010−1000−a+2222,R=,H=F=

010R0R−100010001

M+100

,2GivenM=1000astheoverflowlimit,using(18),(21),(24),thequadratic

Lyapunovfunction

V(x)=

121177720123x1−x1−x2−x2−2000500010001000010000wasfoundtoprovebounded-nessandfinite-timeterminationforallaandb.

5Block-wiseAnalysisofComputerPrograms

Block-wiseanalysisisamethodforimprovingthescalability/computationalcost

oftheabovetechniquesasanalysisoflargesizecomputerprogramsisunder-taken.Thebasicideahereistoconsiderlarge-sizesoftwareastheinterconnectionofsmallersizedynamicalsystems(functions,subfunctionsandproceduresthatwecallthem\"blocks\").Thesesocalledblocksinteractviaasubsetofthepro-gramstatescalled\"globalvariables\".Correctnessofeachblockisestablishedseparately,knownapriori,orassumedtemporarily.Thedynamicsofeachblockisthenabstracted/approximatedbyequalitiesand/orinequalitiesrelatingthein-putsandtheoutputs.Inobviouscases,abstractionsofthislevelmaybeprovidedbytheprogrammertofacilitatetheanalysistask.Thisway,thestates/variablesthatarelocaltoeachblockareeliminatedfromtheglobalmodel.Correctnessofthesoftwarewillbeestablishedbyverifyingbounded-nessofglobalvariables,aswellasverifyingthatwhenrequired,afinalglobalstatewillbereachedinfinite-time.Incasecorrectnessofsomeoftheblockswereassumedtemporarily,theircorrectnessneedtobeestablishedrigorously,subjecttotheboundsavail-ablenow,forglobalvariables.Tofurtherclarifytheconcept,weimplementthemethodonthefollowingexample.

typedefenum{FALSE=0,TRUE=1}BOOLEAN;BOOLEANINIT1,INIT2;floatP,X;

voidfilter1(){

staticfloatE[2],S[2];if(INIT1){

S[0]=X;P=X;E[0]=X;E[1]=0;S[1]=0;}else{

P=0.5*X—0.7*E[0]+0.4*E[1]+1.5*S[0]—S[1]*0.7;E[1]=E[0];E[0]=X;S[1]=S[0];S[0]=P;

X=P/6+S[1]/5;}}voidfilter2(){

staticfloatE2[2],S2[2];if(INIT2){

S2[0]=0.5*X;P=X;E2[0]=0.8*X;E2[1]=0;S2[1]=0;}else{

P=0.3*X—E2[0]*0.2+E2[1]*1.4+S2[0]*0.5—S2[1]*1.7;E2[1]=0.5*E2[0];E2[0]=2*X;

S2[1]=S2[0]+10;S2[0]=P/2+S2[1]/3;X=P/8+S2[1]/10;}}voidmain(){

X=0;INIT1=TRUE;INIT2=TRUE;while(1){

X=0.98*X+85;if(abs(X)<=400){

filter1();X=X+100;

INIT1=FALSE;

}elseif(abs(X)<=800){

filter2();X=X—50;

INIT2=FALSE;}}}

Duetothepresenceofstaticvariableseands,bounded-nessoftheaboverecur-sionforaninfiniteiterationmustbeverified.UsingLMIs(18)−(24)°°£numberof¤

withθ=0.9,°Pe1e0s1s0°≤2038wasproved.

°£°£¤°¤°°Pe1e0s1s0°≤2038→°Ps1°≤2038sµ¶µ¶22

11

+'531|x|≤2038

65

Forautomated(block-wise)analysisofthisprogram,theanalyzermustbe

provided(eitherbyacomplierorbytheprogrammer)withthesysteminvariantthatpriortoeachexecutionoffilter1(),|x|≤400.Next,filter()ismodeledinthefollowingabstractedway:

wx∈[−1,1],s0(0)∈[−400,400],e0(0)∈[−400,400],P(0)∈[−400,400],s1(0)=0,e1(0)=0.

⎡⎤P(k)⎤⎡⎤⎡

⎥P(k+1)00.4−0.7−0.71.50.5×4000⎢⎢e1(k)⎥

⎢⎢e1(k+1)⎥⎢001⎥0000⎥⎥⎢e0(k)⎥⎢⎥⎢

⎢⎢e0(k+1)⎥=⎢000⎥001×4000⎥⎥⎢s1(k)⎥⎢⎥⎢

⎥⎣s1(k+1)⎦⎣0000100⎦⎢⎢s0(k)⎥

00.4−0.7−0.71.50.5×4000⎣wx(k)⎦s0(k+1)

1

Thisprovesthatintheworstcase,thevalueofX,afterexecutionoffilter1()cannotbegreaterthan531.Similarly,priortoeachexecutionoffilter2(),|x|≤800isinvariant.Next,filter2()ismodeledinthefollowingabstractedway:wx∈[−1,1],s20(0)∈[−400,400],e20(0)∈[−0,0],P(0)∈[−800,800],s21(0)=0,e21(0)=0.⎤P(k)⎤⎡⎤⎡

⎥01.4−0.2−1.70.50.3×8000⎢P(k+1)⎢e21(k)⎥

⎢⎥⎢e21(k+1)⎥⎢000.50000⎥⎥⎢⎥⎢e20(k)⎥⎢

⎢⎥⎢e20(k+1)⎥=⎢000002×8000⎥⎥⎢⎥⎢s21(k)⎥⎢

⎣s21(k+1)⎦⎣00001010⎦⎢s20(k)⎥⎢⎥.4−0.2−1.710.50.3×80010⎣wx(k)⎦s20(k+1)012+2232231

°£¤°

Again,usingLMIs(18)−(24)withθ=0.9,°Pe1e0s1s0°≤9935wasproved.

°£°£¤°¤°°Pe1e0s1s0°≤9935→°Ps1°≤9935sµ¶µ¶22

11

+'1591|x|≤9935

810Thisinturn,provesthatintheworstcase,thevalueofX,afterexecution

offilter2()cannotbegreaterthan1591.Themainprogramisnowabstractedinthefollowingway.

voidmain(){

X=0;while(1){

X=0.98*X+85;if(abs(X)<=400){

X=531*w1;%w1∈[−1,1]X=X+100;

}elseif(abs(X)<=800){

X=1591*w2;%w2∈[−1,1]X=X—50;}}}

Usingthesamemethods,analysisofthisprograminturnprovesthat|x|≤4560.Therefore,bounded-nessofallvariablesisestablished.

6Conclusions

Anewframeworkforanalysisofreal-timesoftwarewasintroduced.Itwasshownthatsoftwarecanbeviewed/modeledasadynamicalsystem.Specificmodelscarryingthistaskwerealsointroduced.Systeminvariants,foundbyconvexoptimizationofcertainLyapunov-likefunctionsprovethedesiredpropertiesofthesoftware.Thesepropertiesincludebounded-nessofallvariableswithinsaferegionsandfinitetimeterminationoftheprogram.Toimprovescalabilityofthesetechniquesforapplicationtolarge-sizecomputerprograms,themethodofblock-wiseanalysisofcomputercodewassuggested.Itwasshownthroughanumericalexample,howthismethodcanbeapplied.

References

1.S.Boyd,L.E.Ghaoui,E.Feron,andV.Balakrishnan.LinearMatrixInequalitiesinSystemsandControlTheory.SocietyforIndustrialandAppliedMathematics,1994.

2.D.Bertsimas,andJ.Tsitsikilis.IntroductiontoLinearOptimization.AthenaSci-entific,1997.

3.M.S.Branicky,V.S.Borkar,andS.K.Mitter.Aunifiedframeworkforhybridcon-trol:modelandoptimalcontroltheory.IEEETransactionsonAutomaticControl,43(1):31-45,1998.

4.M.A.Colon,S.Sankaranarayanan,H.B.Sipma.Linearinvariantgenerationusingnon-linearconstraintsolving.InComputerAidedVerification(CAV2003),vol.2725ofLectureNotesinComputerScience,SpringerVerlag,pp.420-433.

5.P.CousotandR.Cousot.Abstractinterpretation:aunifiedlatticemodelforstaticanalysisofprogramsbyconstructionorapproximationoffixpoints.InProc.4thACMSIGPLAN-SIGACTSymposiumonPrinciplesofProgrammingLanguages,POPL’77,pages238—252,1977.

6.P.Cousot,andR.Cousot.Systematicdesignofprogramanalysisframeworks.InConferenceRecordoftheSixthAnnualACMSIGPLAN-SIGACTSymposiumonPrinciplesofProgrammingLanguages,pages269—282,SanAntonio,Texas,1979.ACMPress,NewYork.

7.P.Cousot.Semanticfoundationsofprogramanalysis.InS.MuchnickandN.Jones,editors,ProgramFlowAnalysis:TheoryandApplications,chapter10,pages303—342.Prentice-Hall,1981.

8.D.Dams.AbstractinterpretationandpartitionrefinementforModelChecking.Ph.D.Thesis,EindhovenUniversityofTechnology,1996.

9.S.Prajna,andA.Jadbabaie.Safetyverificationofhybridsystemsusingbarriercertificates.HybridSystems:ComputationandControl.Springer-Verlaglecturenotesincomputerscience,March2004.

10.M.Johansson,andA.Rantzer.OnthecomputationofpiecewisequadraticLya-punovfunctions.InProc.36thIEEEConferenceonDecisionandControl,SanDiego,California,December1997.

11.M.Johansson,andA.Rantzer.ComputationofpiecewisequadraticLyapunov

functionsforhybridsystems.IEEETransactionsonAutomaticControl,43(4),pp.555-559,April1998.

12.S.HedlundandA.Rantzer.Optimalcontrolofhybridsystems.InProc.38thIEEE

ConferenceonDecisionandControl,Phoenix,Arizona,December1999.

13.R.Alur,andG.J.Pappas(Eds.):HybridSystems:ComputationandControl,

7thInternationalWorkshop,LectureNotesinComputerScience,volume2993,SpringerVerlag,March2004.

14.G.Lafferriere,G.J.Pappas,andS.Sastry.Hybridsystemswithfinitebisim-ulations.HybridSystemsV,LectureNotesinComputerScience,volume1567,Springer1999.

15.G.Lafferriere,G.J.Pappas,andS.Sastry.Reachabilityanalysisofhybridsystems

usingbisimulations.InProc.ofthe37thIEEEConferenceonDecisionandControl,pages1623-1628,Tampa,1998.

16.J.Lygeros,C.Tomlin,andS.Sastry.Controllersforreachabilityspecificationsfor

hybridsystems.Automatica,35(3):349-370,1999.

17.D.Monniaux.AbstractinterpretationofprogramsasMarkovdecisionprocesses.

InStaticAnalysisSymposium,volume2694inLectureNotesinComputerScience,pages237-254,SpringerVerlag,2003.

18.P.A.Parrilo.MinimizingPolynomialFunctions.InAlgorithmicandQuantitative

RealAlgebraicGeometry,DIMACSSeriesinDiscreteMathematicsandTheoreti-calComputerScience,Vol.60,pp.83—99,AMS.

19.K.Gatermann,andP.A.Parrilo.Symmetrygroups,semidefiniteprograms,and

sumsofsquares.JournalofPureandAppl.Algebra,Vol.192,No.1-3,pp.95-128,2004.

因篇幅问题不能全部显示,请点此查看更多更全内容