1、解:
设公司赔付金额为X,则X的可能值为;
投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010
投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X的分布律为: 25 0 0 000.0002 .0010 .9988 2、一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X表示取出的三只球中的最大号码,写出随机变量X的分布律
解:X可以取值3,4,5,分布律为 也可列为下表 X: 3, 4,5
P:
136,, 1010103、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X表示取出次品的只数,(1)求X的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X可能为0,1,2个。
P(X1)P(X2)12C2C133C1521C2C133C1512 351 35P 再列为下表 X: 0, 1, 2
O 1 2 x P: 22,12,1
3535354、进行重复实验,设每次成功的概率为p,失败的概率为q =1-p(0
(2)将实验进行到出现r次成功为止,以Y表示所需的试验次数,求Y的分布律。(此时称Y服从以r, p为参数的巴斯卡分布。)
(3)一篮球运动员的投篮命中率为45%,以X表示他首次投中时累计已投篮的次数,写出X的分布律,并计算X取偶数的概率。
解:(1)P (X=k)=qk-1p k=1,2,……
(2)Y=r+n={最后一次实验前r+n-1次有n次失败,且最后一次成功} P(Yrn)Crnn1qnpr1pCrnn1qnpr,n0,1,2,,其中 q=1-p,
1rkr,kr,r1, 或记r+n=k,则 P{Y=k}=Ckr1p(1p)k1
(3)P (X=k) = (0.55)0.45 k=1,2…
-
P (X取偶数)=P(Xk12k)k1(0.55)2k10.4511 315、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的窗子飞入了房间,它只能从开着的窗子飞出去。鸟在房子里飞来飞去,试图飞出房间。假定鸟是没有记忆的,鸟飞向各扇窗子是随机的。
(1)以X表示鸟为了飞出房间试飞的次数,求X的分布律。
(2)户主声称,他养的一只鸟,是有记忆的,它飞向任一窗子的尝试不多于一次。以Y表示这只聪明的鸟为了飞出房间试飞的次数,如户主所说是确实的,试求Y的分布律。
(3)求试飞次数X小于Y的概率;求试飞次数Y小于X的概率。 解:(1)X的可能取值为1,2,3,…,n,…
P {X=n}=P {前n-1次飞向了另2扇窗子,第n次飞了出去}
=(2)n11, n=1,2,……
33(2)Y的可能取值为1,2,3
P {Y=1}=P {第1次飞了出去}=1
3 P {Y=2}=P {第1次飞向 另2扇窗子中的一扇,第2次飞了出去} =211
323 P {Y=3}=P {第1,2次飞向了另2扇窗子,第3次飞了出去}
=2!1
3!33同上,P{XY}P{Yk}P{XY|Yk}
k1故P{YX}1P{XY}P{XY)38 816、一大楼装有5个同类型的供水设备,调查表明在任一时刻t每个设备使用的概率为0.1,问在同一时刻
(1)恰有2个设备被使用的概率是多少? (2)至少有3个设备被使用的概率是多少? (3)至多有3个设备被使用的概率是多少? (4)至少有一个设备被使用的概率是多少?
7、设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号。(1)进行了5 次试验,求指示灯发出信号的概率 。(2)进行了7次试验,求指示灯发出信号的概率
解: 设X为 A发生的次数。 则X:B0.3,n. n=5,7
B:“指示等发出信号“ ① PBPX3C5k0.3k0.75k0.163
k35 ②PBPX3PXK1PXK
k30728、甲、乙二人投篮,投中的概率各为0.6, 0.7,令各投三次。求 (1)二人投中次数相等的概率。 记X表甲三次投篮中投中的次数 Y表乙三次投篮中投中的次数
由于甲、乙每次投篮,且彼此投篮也。
P (X=Y)=P (X=0, Y=0)+P (X=2, Y=2)+P (X=3, Y=3)
= P (X=0) P (Y=0)+ P (X=1) P (Y=1)+ P (X=2) P (Y=2)+ P (X=3) P (Y=3)
110.6(0.4)2][C30.7(0.3)2] = (0.4)3× (0.3)3+ [C3(2)甲比乙投中次数多的概率。
P (X>Y)=P (X=1, Y=0)+P (X=2, Y=0)+P (X=2, Y=1)+
P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P (X=3) P (Y=2) =P (X=1) P (Y=0) + P (X=2, Y=0)+ P (X=2, Y=1)+ P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P (X=3) P (Y=2) 120.6(0.4)2](0.3)3[C3(0.6)20.4](0.3)8 =[C39、有一大批产品,其验收方案如下,先做第一次检验:从中任取10件,经验收无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品,若产品的次品率为10%,求
(1)这批产品经第一次检验就能接受的概率 (2)需作第二次检验的概率
(3)这批产品按第2次检验的标准被接受的概率
(4)这批产品在第1次检验未能做决定且第二次检验时被通过的概率 (5)这批产品被接受的概率
解:X表示10件中次品的个数,Y表示5件中次品的个数, 由于产品总数很大,故X~B(10,0.1),Y~B(5,0.1)(近似服从) (1)P {X=0}=0.910≈0.349
210.120.98C100.10.990.581 (2)P {X≤2}=P {X=2}+ P {X=1}=C10(3)P {Y=0}=0.9 5≈0.590
(4)P {0 (1)某人随机地去猜,问他试验成功一次的概率是多少? (2)某人声称他通过品尝能区分两种酒。他连续试验10次,成功3次。试问他是猜对的,还是他确有区分的能力(设各次试验是相互的。) 解:(1)P (一次成功)=141 C8701693()3()7(2)P (连续试验10次,成功3次)= C1070703。此概率太小,10000按实际推断原理,就认为他确有区分能力。 11. 尽管在几何教科书中已经讲过用圆规和直尺三等分一个任意角是不可能的。但每年总有一些“发明者”撰写关于用圆规和直尺将角三等分的文章。设某地区每年撰写此类文章的篇数X服从参数为6的泊松分布。求明年没有此类文章的概率。 解: X~6. 6 12. 一电话交换台每分钟收到呼唤的次数服从参数为4的泊松分布。求(1)每分钟恰有8次呼唤的概率。(2)某一分钟的呼唤次数大于3的概率。 e48e49 (1)PX8 r8r!r9r! (2)P{X3}P{X4}0.566530 13. 某一在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2)t的泊松分布,而与时间间隔的起点无关(时间以小时计)。 (1)求某一天中午12时至下午3时没有收到紧急呼救的概率。 (2)求某一天中午12时至下午5时至少收到1次紧急呼救的概率。 解: X: 33 ① PX0e20.2231 22.5ke2.55 0.918 ② PX1k!2k114、解:X~(2t) 1(1)、t10分钟时t小时, 6t2 (2)、PX02t0.5故 0e2t10.5t0.34657(小时) 所以t0.34657*6020.79(分钟) 15、解: n1000,p0.0001,np0.116、解:PX21PX0PX11 0e0!1e1!10.99530.004717、解: 1k设X服从0:1分布,其分布率为PXkpk1p,k0,1,求X的分布函数,并作出其图形。 解一: 0 1 X的分布函数为: 18.在区间0,a上任意投掷一个质点,以X表示这个质点的坐标。设这个质 点落在0,a中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数。 解:① 当X0时。Xx是不可能事件,FXPXx0 ②当0xa时, P0Xxkx 而 0Xa是必然事件 xa ③当xa时,Xx是必然事件,有FxPXx1 则 FxPXxPX0P0Xx 19、以X表示某商店从早晨开始营业起直到第一顾客到达的等待时间(以分计),X的分布函数是 求下述概率: (1)P{至多3分钟};(2)P {至少4分钟};(3)P{3分钟至4分钟之间}; (4)P{至多3分钟或至少4分钟};(5)P{恰好2.5分钟} 解:(1)P{至多3分钟}= P {X≤3} =FX(3)1e1.2 (2)P {至少4分钟} P (X ≥4) =1FX(4)e1.6 (3)P{3分钟至4分钟之间}= P {3 1,xe.求(1)P (X<2), P {0 0,其它21、设随机变量X的概率密度f(x)为 21x2(1)f(x)01x1其它 0x1x(2)f(x)2x1x2 其他0求X的分布函数F (x),并作出(2)中的f (x)与F (x)的图形。 解:(1)当-1≤x≤1时: 11x当1 解:(2)F(x)P(Xx)f(t)dt xF 故分布函数为 (2)中的f (x)与F (x)的图形如下 f x x 1 2 0 0 1 X服从迈克斯韦尔2 22、⑴由统计物理学知,分子运动速度的绝对值(Maxwell) 分布,其概率密度为 其中bm2kT,k为Boltzmann常数,T为绝对温度,m是分子的质量。试确定常数A。 解: ① Qxdx1 即fxdx0Axe2x2bAbxedx02x2bx2d b②当t0时,FTt0dt0 x1241edt 当t0时, FTtfxdtFTt0241t501001001001e241dte241e241 或P50T10050ftdt50241ttt23、某种型号的电子的寿命X(以小时计)具有以下的概率密度: 现有一大批此种管子(设各电子管损坏与否相互)。任取5只,问其中至少有2只寿命大于1500小时的概率是多少? 解:一个电子管寿命大于1500小时的概率为 令Y表示“任取5只此种电子管中寿命大于1500小时的个数”。则Y~B(5,2), 32111P(Y2)1P(Y2)1P(Y0)P(Y1)1()5C5()()4333 15211232112432433524、设顾客在某银行的窗口等待服务的时间X(以分计)服从指数分布,其 概率密度为: 某顾客在窗口等待服务,若超过10分钟他就离开。他一个月要到银行5次。以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律。并求P(Y≥1)。 解:该顾客“一次等待服务未成而离去”的概率为 52k25k因此Y~B(5,e2).即P(Yk)e(1e),(k1,2,3,4,5 kP(Y1)1P(Y1)1P(Y0)1(1e2)51(110.8677510.48330.5167.15)1(10.1353363)57.3 25、设K在(0,5)上服从均匀分布,求方程4x24xKK20有实根的概率 1 ∵ K的分布密度为:f(K)5002 0K5其他 要方程有根,就是要K满足(4K)-4×4× (K+2)≥0。 解不等式,得K≥2时,方程有实根。 ∴ P(K2)21f(x)dxdx25550dx3 526、设X~N(3.22) (1)求P (2 βμαμ ∵ 若X~N(μ,σ2),则P (α 2323 =122 =1-φ(-0.5) +φ(-2.5) =1-0.3085+0.0062=0.6977 33P (X>3)=1-P (X≤3)=1-φ=1-0.5=0.5 2(2)决定C使得P (X > C )=P (X≤C) ∵ P (X > C )=1-P (X≤C )= P (X≤C) 得 又 P (X≤C )=1=0.5 2C3C3P (X≤C )=φ0 ∴ C =3 0.5,查表可得2227、某地区18岁的女青年的血压(收缩区,以mm-Hg计)服从N(110,122)在 该地区任选一18岁女青年,测量她的血压X。求 (1)P (X≤105),P (100 解:(1)P(X105)(105110)(0.4167)1(0.4167)10.66160.3384 1228、由某机器生产的螺栓长度(cm)服从参数为μ=10.05,σ=0.06的正态分布。规定长度在范围10.05±0.12内为合格品,求一螺栓为不合格的概率是多少? 设螺栓长度为X P{X不属于(10.05-0.12, 10.05+0.12) =1-P (10.05-0.12 29、一工厂生产的电子管的寿命X(以小时计)服从参数为μ=160,σ(未知)的正态分布,若要求P (120<X≤200==0.80,允许σ最大为多少? 20016012016040400.80 ∵ P (120<X≤200)=σσσσ又对标准正态分布有φ(-x)=1-φ(x) 40400.80 ∴ 上式变为1σσ40400.9 解出便得:σσ 再查表,得401.281σ4031.25 σ1.28130、解: 31、解: Qf(x)0,g(x)0,0a132、解:af(x)(1a)g(x)0且 af(x)(1a)g(x)dxaf(x)dx(1a)g(x)dxa(1a)11, 30所以af(x)(1a)g(x)为概率密度函数 33、设随机变量X的分布律为: X:-2, -1, 0, 3 P:1, 5 1, 1, 1, 11 6515求Y=X 2的分布律 ∵ Y=X 2:(-2)2 P: 1 5 (-1)2 65(0)2 1530(1)2 (3)2 1 1 1 11 再把X 2的取值相同的合并,并按从小到大排列,就得函数Y的分布律为: ∴ Y: 0 1 4 9 P: 1 11 1 5615511 3034、设随机变量X在(0,1)上服从均匀分布 (1)求Y=eX的分布密度 1∵ X的分布密度为:f(x)00x1 x为其他 Y=g (X) =eX是单调增函数 又 X=h (Y)=lnY,反函数存在 且 α = min[g (0), g (1)]=min(1, e)=1 max[g (0), g (1)]=max(1, e)= e f[h(y)]|h'(y)|11∴ Y的分布密度为:ψ(y)y01yey为其他 (2)求Y=-2lnX的概率密度。 ∵ Y= g (X)=-2lnX 是单调减函数 又 Xh(Y)e 反函数存在。 且 α = min[g (0), g (1)]=min(+∞, 0 )=0 β=max[g (0), g (1)]=max(+∞, 0 )= +∞ yy1212f[h(y)]|h'(y)|1ee∴ Y的分布密度为:ψ(y)220Y20yy为其他 35、设X~N(0,1) (1)求Y=eX的概率密度 ∵ X的概率密度是f(x)1e2πx22,x Y= g (X)=eX 是单调增函数 又 X= h (Y ) = lnY 反函数存在 且 α = min[g (-∞), g (+∞)]=min(0, +∞)=0 β = max[g (-∞), g (+∞)]= max(0, +∞)= +∞ ∴ Y的分布密度为: (2)求Y=2X2+1的概率密度。 在这里,Y=2X2+1在(+∞,-∞)不是单调函数,没有一般的结论可用。 设Y的分布函数是FY(y), 则 FY ( y)=P (Y≤y)=P (2X2+1≤y) =Py1X2y12 y12y12x22当y<1时:FY ( y)=0 当y≥1时:Fy(y)Py1X2y121e2πdx 故Y的分布密度ψ( y)是: 当y≤1时:ψ( y)= [FY ( y)]' = (0)' =0 当y>1时,ψ( y)= [FY ( y)]' =y1212ex22 = 12π(y1)y12y1e4dx (3)求Y=| X |的概率密度。 ∵ Y的分布函数为 FY ( y)=P (Y≤y )=P ( | X |≤y) 当y<0时,FY ( y)=0 当y≥0时,FY ( y)=P (| X |≤y )=P (-y≤X≤y)=∴ Y的概率密度为: yy1e2dx 2πx2当y≤0时:ψ( y)= [FY ( y)]' = (0)' =0 当y>0时:ψ( y)= [FY ( y)]' =yy1e2πx22y22dxe2 π36、(1)设随机变量X的概率密度为f (x),求Y = X 3的概率密度。 ∵ Y=g (X )= X 3 是X单调增函数, 又 X=h (Y ) =Y,反函数存在, 且 α = min[g (-∞), g (+∞)]=min(0, +∞)=-∞ β = max[g (-∞), g (+∞)]= max(0, +∞)= +∞ ∴ Y的分布密度为: ψ( y)= f [h ( h )]·| h' ( y)| = fex法一:∵ X的分布密度为:f(x)01(y3131)y3,y,但y0 3y=x2 2(2)设随机变量X服从参数为1的指数分布,求Y=X 2的概率密度。 x0 x0 Y=x2是非单调函数 当 x<0时 y=x2 反函数是xy y2 当 x<0时 y=x xy ∴ Y~ fY (y) = f(y)(y)f(y)(y) -O y x y 01ey1ey,y0 = 2y2yy00法二:Y~FY(y)P(Yy)P(yXy)P(Xy)P(Xy) 1e∴ Y~ fY (y) =2y0y,,y0.y0. 37、设X的概率密度为 求Y=sin X的概率密度。 ∵ FY ( y)=P (Y≤y) = P (sinX≤y) 当y<0时:FY ( y)=0 当0≤y≤1时:FY ( y) = P (sinX≤y) = P (0≤X≤arc sin y或π-arc sin y≤X≤π) =arcsiny02xdx2π2xdx πarcsinyπ2π当1 y≤0时,ψ( y )=[ FY ( y)]' = (0 )' = 0 0 2π1y2 1≤y时,ψ( y )=[ FY ( y)]' = (1) = 0 38、设电流I是一个随机变量,它均匀分布在9安:11安之间。若此电流通过2欧的电阻,在其上消耗W2I2.求W的概率密度。 解:QI在9,11上服从均匀分布 I的概率密度为: W2I2的取值为162W242 分布函数 FwwPWwP2I2wPI2的概率密度。[已知θ5(T32)] 9w 239、某物体的温度T (oF )是一个随机变量,且有T~N(98.6,2),试求θ(℃) (t98.6)222法一:∵ T的概率密度为f(t)122e,t 又 θg(T)5(T32) 是单调增函数。 9 Th(θ)9θ32 反函数存在。 5 且 α = min[g (-∞), g (+∞)]=min(-∞, +∞)=-∞ β = max[g (-∞), g (+∞)]= max(-∞, +∞)= +∞ ∴ θ的概率密度ψ(θ)为 法二:根据定理:若X~N(α1, σ1),则Y=aX+b~N (aα1+b, a2 σ2 ) 由于T~N(98.6, 2) 253335251601605故 θT~N98.6,2N,2 9999999故θ的概率密度为:
因篇幅问题不能全部显示,请点此查看更多更全内容