爱玩科技网
您的当前位置:首页ASTM D257-99

ASTM D257-99

来源:爱玩科技网
D

ThesetestmethodsareunderthejurisdictionofASTMCommitteeD-9onElectricalandElectronicInsulatingMaterialsandarethedirectresponsibilityofSubcommitteeD09.12onElectricalTests.

CurrenteditionapprovedOct.10,1999.PublishedNovember1999.OriginallypublishedasD257–25T.LastpreviouseditionD257–93(1998).

123AnnualAnnual4Annual5Annual6AnnualBookBookBookBookBookofofofofofASTMASTMASTMASTMASTMStandards,Standards,Standards,Standards,Standards,VolVolVolVolVol10.01.08.01.10.03.10.02.11.03.

Copyright©ASTM,100BarrHarborDrive,WestConshohocken,PA19428-2959,UnitedStates.

1

conductancetothatobtainediftheelectrodeshadformedtheoppositesidesofasquare.

3.1.4.1Discussion—Surfaceconductivityisexpressedinsiemens.Itispopularlyexpressedassiemens/square(thesizeofthesquareisimmaterial).Surfaceconductivityisthereciprocalofsurfaceresistivity.

3.1.5conductivity,volume,n—thevolumeconductancemultipliedbythatratioofspecimenvolumedimensions(distancebetweenelectrodesdividedbythecross-sectionalareaoftheelectrodes)whichtransformsthemeasuredconduc-tancetothatconductanceobtainediftheelectrodeshadformedtheoppositesidesofaunitcube.

3.1.5.1Discussion—Volumeconductivityisusuallyex-pressedinsiemens/centimetreorinsiemens/metreandisthereciprocalofvolumeresistivity.

3.1.6moderatelyconductive,adj—describesasolidmate-rialhavingavolumeresistivitybetween1and10000000V-cm.

3.1.7resistance,insulation,(Ri),n—theratioofthedcvoltageappliedtotwoelectrodes(onorinaspecimen)tothetotalvolumeandsurfacecurrentbetweenthem.

3.1.7.1Discussion—Insulationresistanceisthereciprocalofinsulationconductance.

3.1.8resistance,surface,(Rappliedtotwoelectrodes(onthes),n—theratioofthedcvoltagesurfaceofaspecimen)tothecurrentbetweenthem.

3.1.8.1Discussion—(Somevolumeresistanceisunavoid-ablyincludedintheactualmeasurement.)Surfaceresistanceisthereciprocalofsurfaceconductance.

3.1.9resistance,volume,(Rv),n—theratioofthedcvoltageappliedtotwoelectrodes(onorinaspecimen)tothecurrentinthevolumeofthespecimenbetweentheelectrodes.

3.1.9.1Discussion—Volumeresistanceisthereciprocalofvolumeconductance.

3.1.10resistivity,surface,(rs),n—thesurfaceresistancemultipliedbythatratioofspecimensurfacedimensions(widthofelectrodesdefiningthecurrentpathdividedbythedistancebetweenelectrodes)whichtransformsthemeasuredresistancetothatobtainediftheelectrodeshadformedtheoppositesidesofasquare.

3.1.10.1Discussion—Surfaceresistivityisexpressedinohms.Itispopularlyexpressedalsoasohms/square(thesizeofthesquareisimmaterial).Surfaceresistivityisthereciprocalofsurfaceconductivity.

3.1.11resistivity,volume,(rofspecimenv),n—thevolumeresistancemultipliedbythatratiovolumedimensions(cross-sectionalareaofthespecimenbetweentheelectrodesdividedbythedistancebetweenelectrodes)whichtransformsthemeasuredresistancetothatresistanceobtainediftheelectrodeshadformedtheoppositesidesofaunitcube.

3.1.11.1Discussion—Volumeresistivityisusuallyex-pressedinohm-centimetres(preferred)orinohm-metres.Volumeresistivityisthereciprocalofvolumeconductivity.4.SummaryofTestMethods

4.1Theresistanceorconductanceofamaterialspecimenorofacapacitorisdeterminedfromameasurementofcurrentorofvoltagedropunderspecifiedconditions.Byusingtheappropriateelectrodesystems,surfaceandvolumeresistance

orconductancemaybemeasuredseparately.Theresistivityorconductivitycanthenbecalculatedwhentherequiredspeci-menandelectrodedimensionsareknown.

5.SignificanceandUse

5.1Insulatingmaterialsareusedtoisolatecomponentsofanelectricalsystemfromeachotherandfromground,aswellastoprovidemechanicalsupportforthecomponents.Forthispurpose,itisgenerallydesirabletohavetheinsulationresis-tanceashighaspossible,consistentwithacceptablemechani-cal,chemical,andheat-resistingproperties.Sinceinsulationresistanceorconductancecombinesbothvolumeandsurfaceresistanceorconductance,itsmeasuredvalueismostusefulwhenthetestspecimenandelectrodeshavethesameformasisrequiredinactualuse.Surfaceresistanceorconductancechangesrapidlywithhumidity,whilevolumeresistanceorconductancechangesslowlyalthoughthefinalchangemayeventuallybegreater.

5.2Resistivityorconductivitymaybeusedtopredict,indirectly,thelow-frequencydielectricbreakdownanddissi-pationfactorpropertiesofsomematerials.Resistivityorcontivityisoftenusedasanindirectmeasureofmoisturecontent,degreeofcure,mechanicalcontinuity,anddeteriora-tionofvarioustypes.Theusefulnessoftheseindirectmeasure-mentsisdependentonthedegreeofcorrelationestablishedbysupportingtheoreticalorexperimentalinvestigations.Ade-creaseofsurfaceresistancemayresulteitherinanincreaseofthedielectricbreakdownvoltagebecausetheelectricfieldintensityisreduced,oradecreaseofthedielectricbreakdownvoltagebecausetheareaunderstressisincreased.

5.3Allthedielectricresistancesorconductancesdependonthelengthoftimeofelectrificationandonthevalueofappliedvoltage(inadditiontotheusualenvironmentalvariables).Thesemustbeknowntomakethemeasuredvalueofresistanceorconductancemeaningful.

5.4Volumeresistivityorconductivitycanbeusedasanaidindesigninganinsulatorforaspecificapplication.Thechangeofresistivityorconductivitywithtemperatureandhumiditymaybegreat(1,2,3,4),7andmustbeknownwhendesigningforoperatingconditions.Volumeresistivityorconductivitydeterminationsareoftenusedincheckingtheuniformityofaninsulatingmaterial,eitherwithregardtoprocessingortodetectconductiveimpuritiesthataffectthequalityofthematerialandthatmaynotbereadilydetectablebyothermethods.

5.5Volumeresistivitiesabove1021V·cm(1019V·m),ob-tainedonspecimensunderusuallaboratoryconditions,areofdoubtfulvalidity,consideringthelimitationsofcommonlyusedmeasuringequipment.

5.6Surfaceresistanceorconductancecannotbemeasuredaccurately,onlyapproximated,becausesomedegreeofvolumeresistanceorconductanceisalwaysinvolvedinthemeasure-ment.Themeasuredvalueisalsoaffectedbythesurfacecontamination.Surfacecontamination,anditsrateofaccumu-lation,isaffectedbymanyfactorsincludingelectrostaticchargingandinterfacialtension.These,inturn,mayaffectthe

7Theboldfacenumbersinparenthesesrefertothelistofreferencesappendedtothesetestmethods.

surfaceresistivity.Surfaceresistivityorconductivitycanbeconsideredtoberelatedtomaterialpropertieswhencontami-nationisinvolvedbutisnotamaterialpropertyintheusualsense.

6.ElectrodeSystems

6.1Theelectrodesforinsulatingmaterialsshouldbeofamaterialthatisreadilyapplied,allowsintimatecontactwiththespecimensurface,andintroducesnoappreciableerrorbecauseofelectroderesistanceorcontaminationofthespecimen(5).Theelectrodematerialshouldbecorrosion-resistantundertheconditionsoftest.Fortestsoffabricatedspecimenssuchasfeed-throughbushings,cables,etc.,theelectrodesemployedareapartofthespecimenoritsmounting.Measurementsofinsulationresistanceorconductance,then,includethecontami-natingeffectsofelectrodeormountingmaterialsandaregenerallyrelatedtotheperformanceofthespecimeninactualuse.

6.1.1Binding-PostandTaper-PinElectrodes,Fig.1andFig.2,provideameansofapplyingvoltagetorigidinsulatingmaterialstopermitanevaluationoftheirresistiveorconduc-tiveproperties.Theseelectrodessimulatetosomedegreetheactualconditionsofuse,suchasbindingpostsoninstrumentpanelsandterminalstrips.Inthecaseoflaminatedinsulatingmaterialshavinghigh-resin-contentsurfaces,somewhatlowerinsulationresistancevaluesmaybeobtainedwithtaper-pinthanwithbindingposts,duetomoreintimatecontactwiththebodyoftheinsulatingmaterial.Resistanceorconductancevaluesobtainedarehighlyinfluencedbytheindividualcontactbetweeneachpinandthedielectricmaterial,thesurfaceroughnessofthepins,andthesmoothnessoftheholeinthedielectricmaterial.Reproducibilityofresultsondifferentspecimensisdifficulttoobtain.

6.1.2MetalBarsinthearrangementofFig.3wereprima-rilydevisedtoevaluatetheinsulationresistanceorconduc-tanceofflexibletapesandthin,solidspecimensasafairlysimpleandconvenientmeansofelectricalqualitycontrol.Thisarrangementissomewhatmoresatisfactoryforobtainingapproximatevaluesofsurfaceresistanceorconductancewhenthewidthoftheinsulatingmaterialismuchgreaterthanitsthickness.

6.1.3SilverPaint,Fig.4,Fig.5,andFig.6,isavailablecommerciallywithahighconductivity,eitherair-dryingorlow-temperature-bakingvarieties,whicharesufficientlypo-

FIG.1Binding-PostElectrodesforFlat,SolidSpecimens

FIG.2Taper-PinElectrodes

FIG.3StripElectrodesforTapesandFlat,SolidSpecimens

roustopermitdiffusionofmoisturethroughthemandtherebyallowthetestspecimentobeconditionedaftertheapplicationoftheelectrodes.Thisisaparticularlyusefulfeatureinstudyingresistance-humidityeffects,aswellaschangewithtemperature.However,beforeconductivepaintisusedasanelectrodematerial,itshouldbeestablishedthatthesolventinthepaintdoesnotattackthematerialsoastochangeits

VolumeResistivityg|Ls2tSurfaceResistivity

FIG.4FlatSpecimenforMeasuringVolumeandSurface

ResistancesorConductances

D05(D1+D2)/2L>4tg|La2tVolumeResistivityg|Ls2tSurfaceResistivity

FIG.5TubularSpecimenforMeasuringVolumeandSurface

ResistancesorConductances

electricalproperties.Reasonablysmoothedgesofguardelec-trodesmaybeobtainedwithafine-bristlebrush.However,forcircularelectrodes,sharperedgescanbeobtainedbytheuseofarulingcompassandsilverpaintfordrawingtheoutlinecirclesoftheelectrodesandfillingintheenclosedareasbybrush.Anarrowstripofmaskingtapemaybeused,providedthepressure-sensitiveadhesiveuseddoesnotcontaminatethe

surfaceofthespecimen.Clamp-onmasksalsomaybeusediftheelectrodepaintissprayedon.

6.1.4SprayedMetal,Fig.4,Fig.5,andFig.6,maybeusedifsatisfactoryadhesiontothetestspecimencanbeobtained.Thinsprayedelectrodesmayhavecertainadvantagesinthattheyarereadyforuseassoonasapplied.Theymaybesufficientlyporoustoallowthespecimentobeconditioned,butthisshouldbeverified.Narrowstripsofmaskingtapeorclamp-onmasksmustbeusedtoproduceagapbetweentheguardedandtheguardelectrodes.Thetapeshallbesuchasnottocontaminatethegapsurface.

6.1.5EvaporatedMetalmaybeusedunderthesamecon-ditionsgivenin6.1.4.

6.1.6MetalFoil,Fig.4,maybeappliedtospecimensurfacesaselectrodes.Theusualthicknessofmetalfoilusedforresistanceorconductancestudiesofdielectricsrangesfrom6to80µm.Leadortinfoilisinmostcommonuse,andisusuallyattachedtothetestspecimenbyaminimumquantityofpetrolatum,siliconegrease,oil,orothersuitablematerial,asanadhesive.Suchelectrodesshallbeappliedunderasmoothingpressuresufficienttoeliminateallwrinkles,andtoworkexcessadhesivetowardtheedgeofthefoilwhereitcanbewipedoffwithacleansingtissue.Oneveryeffectivemethodistouseahardnarrowroller(10to15mmwide),andtorolloutwardonthesurfaceuntilnovisibleimprintcanbemadeonthefoilwiththeroller.Thistechniquecanbeusedsatisfactorilyonlyonspecimensthathaveveryflatsurfaces.Withcare,theadhesivefilmcanbereducedto2.5µm.Asthisfilmisinserieswiththespecimen,itwillalwayscausethemeasuredresistancetobetoohigh.Thiserrormaybecomeexcessiveforthelower-resistivityspecimensofthicknesslessthan250µm.Alsothehardrollercanforcesharpparticlesintoorthroughthinfilms(50µm).Foilelectrodesarenotporousandwillnotallowthetestspecimentoconditionaftertheelectrodeshavebeenapplied.Theadhesivemayloseitseffectivenessatelevatedtemperaturesnecessitatingtheuseofflatmetalback-upplatesunderpressure.Itispossible,withtheaidofasuitablecuttingdevice,tocutaproperwidthstripfromoneelectrodetoformaguardedandguardelectrode.Suchathree-terminalspecimennormallycannotbeusedforsurfaceresistanceorconductancemeasurementsbecauseofthegreaseremainingonthegapsurface.Itmaybeverydifficulttocleantheentiregapsurfacewithoutdisturbingtheadjacentedgesoftheelectrode.

6.1.7ColloidalGraphite,Fig.4,dispersedinwaterorothersuitablevehicle,maybebrushedonnonporous,sheetinsulat-ingmaterialstoformanair-dryingelectrode.Maskingtapesorclamp-onmasksmaybeused(6.1.4).Thiselectrodematerialisrecommendedonlyifallofthefollowingconditionsaremet:6.1.7.1Thematerialtobetestedmustacceptagraphitecoatingthatwillnotflakebeforetesting,

6.1.7.2Thematerialbeingtestedmustnotabsorbwaterreadily,and

6.1.7.3Conditioningmustbeinadryatmosphere(Proce-dureB,MethodsD618),andmeasurementsmadeinthissameatmosphere.

6.1.8Mercuryorotherliquidmetalelectrodesgivesatisfac-toryresults.Mercuryisnotrecommendedforcontinuoususeoratelevatedtemperaturesduetotoxiceffects.(Warning—

FIG.6Conducting-PaintElectrodes

Mercurymetalvaporpoisoninghaslongbeenrecognizedasahazardinindustry.ThemaximumexposurelimitsaresetbytheAmericanConferenceofGovernmentalIndustrialHygienists.8Theconcentrationofmercuryvaporoverspillsfrombrokenthermometers,barometers,orotherinstrumentsusingmercurycaneasilyexceedtheseexposurelimits.Mercury,beingaliquidandquiteheavy,willdisintegrateintosmalldropletsandseepintocracksandcrevicesinthefloor.Theuseofacommerciallyavailableemergencyspillkitisrecommendedwheneveraspilloccurs.Theincreasedareaofexposureaddssignificantlytothemercuryvaporconcentrationinair.Mer-curyvaporconcentrationiseasilymonitoredusingcommer-ciallyavailablesniffers.Spotchecksshouldbemadeperiodi-callyaroundoperationswheremercuryisexposedtotheatmosphere.Thoroughchecksshouldbemadeafterspills.)Themetalformingtheupperelectrodesshouldbeconfinedbystainlesssteelrings,eachofwhichshouldhaveitslowerrimreducedtoasharpedgebybevelingonthesideawayfromtheliquidmetal.Fig.7AandFig.7Bshowtwoelectrodearrange-ments.

6.1.9FlatMetalPlates,Fig.4,(preferablyguarded)maybeusedfortestingflexibleandcompressiblematerials,bothatroomtemperatureandatelevatedtemperatures.Theymaybecircularorrectangular(fortapes).Toensureintimatecontactwiththespecimen,considerablepressureisusuallyrequired.Pressuresof140to700kPahavebeenfoundsatisfactory(seematerialspecifications).

6.1.9.1Avariationofflatmetalplateelectrodesystemsisfoundincertaincelldesignsusedtomeasuregreasesorfillingcompounds.Suchcellsarepreassembledandthematerialtobe

AmericanConferenceofGovernmentalandIndustrialHygienists,6500Glen-wayAve.,BuildingD-7,Cincinnati,OH,45211.

8NOTE1—Warning:See6.1.8

FIG.7MercuryElectrodesforFlat,SolidSpecimens

testediseitheraddedtothecellbetweenfixedelectrodesortheelectrodesareforcedintothematerialtoapredeterminedelectrodespacing.Becausetheconfigurationoftheelectrodesinthesecellsissuchthattheeffectiveelectrodeareaandthedistancebetweenthemisdifficulttomeasure,eachcellconstant,K,(equivalenttotheA/tfactorfromTable1)canbederivedfromthefollowingequation:

K53.6pC511.3C

(1)

NOTE1—Warning:See6.1.8

FIG.7MercuryCellforThinSheetMaterial(continued)where:

Khasunitsofcentimetres,and

Chasunitsofpicofaradsandisthecapacitanceoftheelectrodesystemwith

airasthedielectric.SeeTestMethodsD150formethodsofmeasurementforC.

6.1.10ConductingRubberhasbeenusedaselectrodema-terial,asinFig.4,andhastheadvantagethatitcanquicklyandeasilybeappliedandremovedfromthespecimen.Astheelectrodesareappliedonlyduringthetimeofmeasurement,theydonotinterferewiththeconditioningofthespecimen.Theconductive-rubbermaterialmustbebackedbyproperplatesandbesoftenoughsothateffectivecontactwiththespecimenisobtainedwhenareasonablepressureisapplied.

NOTE1—Thereisevidencethatvaluesofconductivityobtainedusingconductive-rubberelectrodesarealwayssmaller(20to70%)thanvaluesobtainedwithtinfoilelectrodes(6).Whenonlyorder-of-magnitudeaccuraciesarerequired,andthesecontacterrorscanbeneglected,aproperlydesignedsetofconductive-rubberelectrodescanprovidearapidmeansformakingconductivityandresistivitydeterminations.

6.1.11Wateriswidelyemployedasoneelectrodeintestinginsulationonwiresandcables.Bothendsofthespecimenmustbeoutofthewaterandofsuchlengththatleakagealongtheinsulationisnegligible.Guardringsmaybenecessaryateachend.Itmaybedesirabletoaddasmallamountofsodiumchloridetothewatertoensurehighconductivity.Measure-mentsmaybeperformedattemperaturesuptoabout100°C.7.ChoiceofApparatusandTestMethod

7.1PowerSupply—Asourceofverysteadydirectvoltageisrequired(seeX1.7.3).Batteriesorotherstabledirectvoltagesuppliesmaybeused.

7.2GuardCircuit—Whethermeasuringresistanceofaninsulatingmaterialwithtwoelectrodes(noguard)orwitha

three-terminalsystem(twoelectrodesplusguard),considerhowtheelectricalconnectionsaremadebetweenthetestinstrumentandthetestsample.Ifthetestspecimenisatsomedistancefromthetestinstrument,orthetestspecimenistestedunderhumidconditions,orifarelativelyhigh(1010to1015ohms)specimenresistanceisexpected,spuriousresistancepathscaneasilyexistbetweenthetestinstrumentandtestspecimen.Aguardcircuitisnecessarytominimizeinterferencefromthesespuriouspaths(seealsoX1.9).

7.2.1WithGuardElectrode—Usecoaxialcable,withthecoreleadtotheguardedelectrodeandtheshieldtotheguardelectrode,tomakeadequateguardedconnectionsbetweenthetestequipmentandtestspecimen.Coaxialcable(againwiththeshieldtiedbacktotheguard)fortheunguardedleadisnotmandatoryhere(orin7.2.2),althoughitsuseprovidessomereductioninbackgroundnoise(seealsoFig.8).

7.2.2WithoutGuardElectrode—Usecoaxialcable,withthecoreleadtooneelectrodeandtheshieldterminatedabout1cmfromtheendofthecorelead(seealsoFig.9).

7.3DirectMeasurements—Thecurrentthroughaspecimenatafixedvoltagemaybemeasuredusinganyequipmentthathastherequiredsensitivityandaccuracy(610%isusuallyadequate).Current-measuringdevicesavailableincludeelec-trometers,d-camplifierswithindicatingmeters,andgalva-nometers.TypicalmethodsandcircuitsaregiveninAppendixX3.Whenthemeasuringdevicescaleiscalibratedtoreadohmsdirectlynocalculationsarerequired.

7.4ComparisonMethods—AWheatstone-bridgecircuitmaybeusedtocomparetheresistanceofthespecimenwiththatofastandardresistor(seeAppendixX3).7.5PrecisionandBiasConsiderations:

7.5.1General—Asaguideinthechoiceofapparatus,thepertinentconsiderationsaresummarizedinTable2,butitisnotimpliedthattheexamplesenumeratedaretheonlyonesapplicable.Thistableisnotintendedtoindicatethelimitsofsensitivityanderrorofthevariousmethodsperse,butratherisintendedtoindicatelimitsthataredistinctlypossiblewithmodernapparatus.Inanycase,suchlimitscanbeachievedorexceededonlythroughcarefulselectionandcombinationoftheapparatusemployed.Itmustbeemphasized,however,thattheerrorsconsideredarethoseofinstrumentationonly.ErrorssuchasthosediscussedinAppendixX1areanentirelydifferentmatter.Inthislatterconnection,thelastcolumnofTable2liststheresistancethatisshuntedbytheinsulationresistancebetweentheguardedelectrodeandtheguardsystemforthevariousmethods.Ingeneral,thelowersuchresistance,thelessprobabilityoferrorfromundueshunting.

NOTE2—Nomatterwhatmeasurementmethodisemployed,thehighestprecisionsareachievedonlywithcarefulevaluationofallsourcesoferror.Itispossibleeithertosetupanyofthesemethodsfromthecomponentparts,ortoacquireacompletelyintegratedapparatus.Ingeneral,themethodsusinghigh-sensitivitygalvanometersrequireamorepermanentinstallationthanthoseusingindicatingmetersorrecorders.Themethodsusingindicatingdevicessuchasvoltmeters,galvanometers,d-camplifiers,andelectrometersrequiretheminimumofmanualadjustmentandareeasytoreadbuttheoperatorisrequiredtomakethereadingataparticulartime.TheWheatstonebridge(Fig.X1.4)andthepotentiometermethod(Fig.X1.2(b))requiretheundividedattentionoftheoperatorin

TABLE1CalculationofResistivityorConductivityATypeofElectrodesorSpecimen

rv5

Circular(Fig.4)RectangularSquare

Tubes(Fig.5)Cables

VolumeResistivity,V-cm

VolumeConductivity,S/cmgv5

p~D11g!2

A5

4AtRvtAGvrv5

2pLRvD2lnD1

A5(a+g)(b+g)A5(a+g)2A5pD0(L+g)D2D1

gv5

2pLRvln

SurfaceConductivity,S(persquare)

ggs5GsPCircular(Fig.4)RectangularSquare

Tubes(Figs.5and6)

SurfaceResistivity,V(persquare)

Pps5gRsP5pD0P52(a+b+2g)P54(a+g)P52pD2Nomenclature:A5theeffectiveareaofthemeasuringelectrodefortheparticulararrangementemployed,P5theeffectiveperimeteroftheguardedelectrodefortheparticulararrangementemployed,Rv5measuredvolumeresistanceinohms,

Gv5measuredvolumeconductanceinsiemens,Rs5measuredsurfaceresistanceinohms,

Gs5measuredsurfaceconductanceinsiemens,t5averagethicknessofthespecimen,

D0,D1,D2,g,L5dimensionsindicatedinFigs.4and6(seeAppendixX2forcorrectiontog),a,b,5lengthsofthesidesofrectangularelectrodes,andln5naturallogarithm.

AAlldimensionsareincentimetres.

keepingabalance,butallowthesettingataparticulartimetobereadatleisure.

7.5.2DirectMeasurements:

7.5.2.1Galvanometer-Voltmeter—Themaximumpercent-ageerrorinthemeasurementofresistancebythegalvanometer-voltmetermethodisthesumofthepercentageerrorsofgalvanometerindication,galvanometerreadability,andvoltmeterindication.Asanexample:agalvanometerhavingasensitivityof500pA/scaledivisionwillbedeflected25divisionswith500Vappliedtoaresistanceof40GV(conductanceof25pS).Ifthedeflectioncanbereadtothenearest0.5division,andthecalibrationerror(includingAyrtonShunterror)is62%oftheobservedvalue,theresultantgalvanometererrorwillnotexceed%.Ifthevoltmeterhasanerrorof62%offullscale,thisresistancecanbemeasuredwithamaximumerrorof66%whenthevoltmeterreadsfullscale,and610%whenitreadsone-thirdfullscale.Thedesirabilityofreadingsnearfullscalearereadilyapparent.7.5.2.2Voltmeter-Ammeter—Themaximumpercentageer-rorinthecomputedvalueisthesumofthepercentageerrorsinthevoltages,VxandVs,andtheresistance,Rs.TheerrorsinVsandRsaregenerallydependentmoreonthecharacteristicsoftheapparatususedthanontheparticularmethod.ThemostsignificantfactorsthatdeterminetheerrorsinVsareindicatorerrors,amplifierzerodrift,andamplifiergainstability.Withmodern,well-designedamplifiersorelectrometers,gainstabil-ityisusuallynotamatterofconcern.Withexistingtechniques,thezerodriftofdirectvoltageamplifiersorelectrometerscannotbeeliminatedbutitcanbemadeslowenoughtobe

FIG.8ConnectionstoGuardedElectrodeforVolumeandSurfaceResistivityMeasurements(VolumeResistancehook-upshown)

relativelyinsignificantforthesemeasurements.Thezerodrift

FIG.9ConnectionstoUnguardedElectrodesforUnguarded

SurfaceMeasurements

isvirtuallynonexistentforcarefullydesignedconverter-typeamplifiers.Consequently,thenullmethodofFig.X1.2(b)istheoreticallylesssubjecttoerrorthanthosemethodsemploy-inganindicatinginstrument,provided,however,thatthepotentiometervoltageisaccuratelyknown.TheerrorinRsomeextentdependentontheamplifiersensitivity.Forsistomea-surementofagivencurrent,thehighertheamplifiersensitivity,thegreaterlikelihoodthatlowervalued,highlyprecisewire-woundstandardresistorscanbeused.Suchamplifierscanbeobtained.Standardresistancesof100GVknownto62%,areavailable.If10-mVinputtotheamplifierorelectrometergivesfull-scaledeflectionwithanerrornotgreaterthan2%offullscale,with500Vapplied,aresistanceof5000TVcanbemeasuredwithamaximumerrorof6%whenthevoltmeterreadsfullscale,and10%whenitreads1⁄3scale.

7.5.2.3Comparison-Galvanometer—Themaximumper-centageerrorinthecomputedresistanceorconductanceisgivenbythesumofthepercentageerrorsinRreadings,andthes,thegalvanom-eterdeflectionsoramplifierassumptionthatthecurrentsensitivitiesareindependentofthedeflections.Thelatterassumptioniscorrecttowellwithin62%overtheusefulrange(above1⁄10full-scaledeflection)ofagood,moderngalvanometer(probably1⁄3scaledeflectionforadccurrentamplifier).TheerrorinRsdependsonthetypeofresistorused,butresistancesof1MVwithalimitoferroraslowas0.1%areavailable.Withagalvanometerord-ccurrentamplifierhavingasensitivityof10nAforfull-scaledeflection,500Vappliedtoaresistanceof5TVwillproducea1%deflection.Atthisvoltage,withtheprecedingnotedstandardresistor,andwithFs5105,dswouldbeabouthalfoffull-scaledeflection,withareadabilityerrornotmorethan61%.Ifd⁄xisapproxi-mately14offull-scaledeflection,thereadabilityerrorwouldnotexceed%,andaresistanceoftheorderof200GV

couldbemeasuredwithamaximumerrorof651⁄2%.

7.5.2.4VoltageRate-of-Change—Theaccuracyofthemea-surementisdirectlyproportionaltotheaccuracyofthemeasurementofappliedvoltageandtimerateofchangeoftheelectrometerreading.Thelengthoftimethattheelectrometerswitchisopenandthescaleusedshouldbesuchthatthetimecanbemeasuredaccuratelyandafull-scalereadingobtained.Undertheseconditions,theaccuracywillbecomparablewiththatoftheothermethodsofmeasuringcurrent.

7.5.2.5ComparisonBridge—Whenthedetectorhasad-equatesensitivity,themaximumpercentageerrorinthecom-puterresistanceisthesumofthepercentageerrorsinthearms,A,B,andN.Withadetectorsensitivityof1mV/scaledivision,500Vappliedtothebridge,andRN51GV,aresistanceof1000TVwillproduceadetectordeflectionofonescaledivision.AssumingnegligibleerrorsinR62%andwiththebridgeAandRbalancedB,withRGVknowntowithintoN51onedetector-scaledivision,aresistanceof100TVcanbemea-suredwithamaximumerrorof66%.

8.Sampling

8.1Refertoapplicablematerialsspecificationsforsam-plinginstructions.

9.TestSpecimens

9.1InsulationResistanceorConductanceDetermination:9.1.1Themeasurementisofgreatestvaluewhenthespeci-menhastheform,electrodes,andmountingrequiredinactualuse.Bushings,cables,andcapacitorsaretypicalexamplesforwhichthetestelectrodesareapartofthespecimenanditsnormalmountingmeans.

9.1.2Forsolidmaterials,thetestspecimenmaybeofanypracticalform.Thespecimenformsmostcommonlyusedareflatplates,tapes,rods,andtubes.TheelectrodearrangementsofFig.2maybeusedforflatplates,rods,orrigidtubeswhoseinnerdiameterisabout20mmormore.TheelectrodearrangementofFig.3maybeusedforstripsofsheetmaterialorforflexibletape.Forrigidstripspecimensthemetalsupportmaynotberequired.TheelectrodearrangementsofFig.6maybeusedforflatplates,rods,ortubes.Comparisonofmaterialswhenusingdifferentelectrodearrangementsisfrequentlyinconclusiveandshouldbeavoided.

9.2VolumeResistanceorConductanceDetermination:9.2.1Thetestspecimenmayhaveanypracticalformthatallowstheuseofathirdelectrode,whennecessary,toguardagainsterrorfromsurfaceeffects.Testspecimensmaybeintheformofflatplates,tapes,ortubes.Fig.4andFig.7illustratetheapplicationandarrangementofelectrodesforplateorsheetspecimens.Fig.5isadiametralcrosssectionofthreeelec-trodesappliedtoatubularspecimen,inwhichelectrodeNo.1istheguardedelectrode,electrodeNo.2isaguardelectrodeconsistingofaringateachendofelectrodeNo.1,andelectrodeNo.3istheunguardedelectrode(7,8).Formaterialsthathavenegligiblesurfaceleakage,theguardringsmaybeomitted.Convenientandgenerallysuitabledimensionsappli-cabletoFig.4inthecaseoftestspecimensthatare3mminthicknessareasfollows:D35100mm,D576mm,oralternatively,Dmm,D2588mm,andD1525mm.Foragivensensitivity,3550thelarger2538mm,andD1specimen

TABLE2ApparatusandConditionsforUse

Reference

Method

Section

Voltmeter-ammeter(galvanometer)Comparison(galvanometer)

Voltmeter-ammeter(dcamplifica-tion,electrometer)

X3.1X3.4X3.2

Figure

MaximumOhmsDetectableat500V10121012101510101710171015;100MV·F101515MaximumOhmsMeasurableto66%at500V

10111011101310101510151014101413TypeofMeasurement

OhmsShuntedbyInsulationResistance

fromGuardtoGuardedElectrode

10to10510to105102to109102to103103to10110(effective)105to106unguarded104to1010Comparison(Wheatstonebridge)Voltagerate-of-changeMegohmmeter(typical)

X1X3X2(a)

(Position1)X2(a)

(Position2)X2(b)X2(b)

X3.5X4X3.3X5

commercialinstruments

deflectiondeflectiondeflectiondeflectiondeflectionnull

null

deflectiondirect-reading

allowsmoreaccuratemeasurementsonmaterialsofhigherresistivity.

9.2.2MeasuretheaveragethicknessofthespecimensinaccordancewithoneofthemethodsinTestMethodsD374pertainingtothematerialbeingtested.Theactualpointsofmeasurementshallbeuniformlydistributedovertheareatobecoveredbythemeasuringelectrodes.

9.2.3ItisnotnecessarythattheelectrodeshavethecircularsymmetryshowninFig.4althoughthisisgenerallyconve-nient.Theguardedelectrode(No.1)maybecircular,square,orrectangular,allowingreadycomputationoftheguardedelec-trodeareaforvolumeresistivityorconductivitydeterminationwhensuchisdesired.Thediameterofacircularelectrode,thesideofasquare,ortheshortestsideofarectangularelectrode,shouldbeatleastfourtimesthespecimenthickness.ThegapwidthshouldbegreatenoughsothatthesurfaceleakagebetweenelectrodesNo.1andNo.2doesnotcauseanerrorinthemeasurement(thisisparticularlyimportantforhigh-input-impedanceinstruments,suchaselectrometers).Ifthegapismadeequaltotwicethespecimenthickness,assuggestedin9.3.3,sothatthespecimencanbeusedalsoforsurfaceresistanceorconductancedeterminations,theeffectiveareaofelectrodeNo.1canbetaken,usuallywithsufficientaccuracy,asextendingtothecenterofthegap.If,underspecialconditions,itbecomesdesirabletodetermineamoreaccuratevaluefortheeffectiveareaofelectrodeNo.1,thecorrectionforthegapwidthcanbeobtainedfromAppendixX2.Elec-trodeNo.3mayhaveanyshapeprovidedthatitextendsatallpointsbeyondtheinneredgeofelectrodeNo.2byatleasttwicethespecimenthickness.

9.2.4Fortubularspecimens,electrodeNo.1shouldencircletheoutsideofthespecimenanditsaxiallengthshouldbeatleastfourtimesthespecimenwallthickness.Considerationsregardingthegapwidtharethesameasthosegivenin9.2.3.ElectrodeNo.2consistsofanencirclingelectrodeateachendofthetube,thetwopartsbeingelectricallyconnectedbyexternalmeans.Theaxiallengthofeachofthesepartsshouldbeatleasttwicethewallthicknessofthespecimen.ElectrodeNo.3mustcovertheinsidesurfaceofthespecimenforanaxiallengthextendingbeyondtheoutsidegapedgesbyatleasttwicethewallthickness.Thetubularspecimen(Fig.5)maytaketheformofaninsulatedwireorcable.Ifthelengthofelectrodeismorethan100timesthethicknessoftheinsulation,theeffectsoftheendsoftheguardedelectrodebecomenegligible,andcarefulspacingoftheguardelectrodesisnotrequired.Thus,thegapbetweenelectrodesNo.1andNo.2maybeseveralcentimetrestopermitsufficientsurfaceresistancebetweentheseelectrodeswhenwaterisusedaselectrodeNo.1.Inthiscase,nocorrectionismadeforthegapwidth.

9.3SurfaceResistanceorConductanceDetermination:9.3.1Thetestspecimenmaybeofanypracticalformconsistentwiththeparticularobjective,suchasflatplates,tapes,ortubes.

9.3.2ThearrangementsofFig.2andFig.3weredevisedforthosecaseswherethevolumeresistanceisknowntobehighrelativetothatofthesurface(2).However,thecombinationofmoldedandmachinedsurfacesmakestheresultobtainedgenerallyinconclusiveforrigidstripspecimens.Thearrange-mentofFig.3issomewhatmoresatisfactorywhenappliedtospecimensforwhichthewidthismuchgreaterthanthethickness,thecutedgeeffectthustendingtobecomerelativelysmall.Hence,thisarrangementismoresuitablefortestingthinspecimenssuchastape,thanfortestingrelativelythickerspecimens.ThearrangementsofFig.2andFig.3shouldneverbeusedforsurfaceresistanceorconductancedeterminationswithoutdueconsiderationsofthelimitationsnotedpreviously.9.3.3ThethreeelectrodearrangementsofFig.4,Fig.6andFig.7maybeusedforpurposesofmaterialcomparison.Theresistanceorconductanceofthesurfacegapbetweenelec-trodesNo.1andNo.2isdetermineddirectlybyusingelectrodeNo.1astheguardedelectrode,electrodeNo.3astheguardelectrode,andelectrodeNo.2astheunguardedelectrode(7,8).TheresistanceorconductancesodeterminedisactuallytheresultantofthesurfaceresistanceorconductancebetweenelectrodesNo.1andNo.2inparallelwithsomevolumeresistanceorconductancebetweenthesametwoelectrodes.Forthisarrangementthesurfacegapwidth,g,shouldbeapproximatelytwicethespecimenthickness,t,exceptforthinspecimens,wheregmaybemuchgreaterthantwicethematerialthickness.

9.3.4Specialtechniquesandelectrodedimensionsmayberequiredforverythinspecimenshavingsuchalowvolumeresistivitythattheresultantlowresistancebetweentheguardedelectrodeandtheguardsystemwouldcauseexcessiveerror.9.4LiquidInsulationResistance—Thesamplingofliquidinsulatingmaterials,thetestcellsemployed,andthemethods

ofcleaningthecellsshallbeinaccordancewithTestMethodD1169.

10.SpecimenMounting

10.1Inmountingthespecimensformeasurements,itisimportantthatthereshallbenoconductivepathsbetweentheelectrodesorbetweenthemeasuringelectrodesandgroundthatwillhaveasignificanteffectonthereadingofthemeasuringinstrument(9).Insulatingsurfacesshouldnotbehandledwithbarefingers(acetaterayonglovesarerecommended).Forrefereetestsofvolumeresistivityorconductivity,thesurfacesshouldbecleanedwithasuitablesolventbeforeconditioning.Whensurfaceresistanceistobemeasured,thesurfacesshouldbecleanedornotcleanedasspecifiedoragreedupon.11.Conditioning

11.1ThespecimensshallbeconditionedinaccordancewithPracticeD618.

11.2Circulating-airenvironmentalchambersorthemethodsdescribedinPracticesE104orD5032maybeusedforcontrollingtherelativehumidity.

12.Procedure

12.1InsulationResistanceorConductance—Properlymountthespecimeninthetestchamber.Ifthetestchamberandtheconditioningchamberarethesame(recommendedproce-dure),thespecimensshouldbemountedbeforethecondition-ingisstarted.Makethemeasurementwithasuitabledevicehavingtherequiredsensitivityandaccuracy(seeAppendix).Unlessotherwisespecified,thetimeofelectrificationshallbe60sandtheapplieddirectvoltageshallbe50065V.

12.2VolumeResistivityorConductivity—Measurethedi-mensionsoftheelectrodesandwidthofguardgap,g.Makethemeasurementwithasuitabledevicehavingtherequiredsensitivityandaccuracy.Unlessotherwisespecified,thetimeofelectrificationshallbe60s,andtheapplieddirectvoltageshallbe50065V.

12.3SurfaceResistanceorConductance:

12.3.1Measuretheelectrodedimensionsandthedistancebetweentheelectrodes,g.MeasurethesurfaceresistanceorconductancebetweenelectrodesNo.1and2withasuitabledevicehavingtherequiredsensitivityandaccuracy.Unlessotherwisespecified,thetimeofelectrificationshallbe60s,andtheapplieddirectvoltageshallbe50065V.

12.3.2WhentheelectrodearrangementofFig.3isused,Pistakenastheperimeterofthecrosssectionofthespecimen.Forthinspecimens,suchastapes,thisperimetereffectivelyreducestotwicethespecimenwidth.

12.3.3WhentheelectrodearrangementsofFig.6areused(andthevolumeresistanceisknowntobehighcomparedtothesurfaceresistance),Pistakentobethelengthoftheelectrodesorcircumferenceofthecylinder.

13.Calculation

13.1Calculatethevolumeresistivity,rv,andthevolumeconductivity,gCalculatev,usingtheequationsinTable1.

13.2thesurfaceresistivity,rconductivity,gs,andthesurfaces,usingtheequationsinTable1.

14.Report

14.1Reportthefollowinginformation:

14.1.1Adescriptionandidentificationofthematerial(name,grade,color,manufacturer,etc.),

14.1.2Shapeanddimensionsofthetestspecimen,14.1.3Typeanddimensionsofelectrodes,

14.1.4Conditioningofthespecimen(cleaning,predrying,hoursathumidityandtemperature,etc.),

14.1.5Testconditions(specimentemperature,relativehu-midity,etc.,attimeofmeasurement),

14.1.6Methodofmeasurement(seeAppendixX3),14.1.7Appliedvoltage,

14.1.8Timeofelectrificationofmeasurement,

14.1.9Measuredvaluesoftheappropriateresistancesinohmsorconductancesinsiemens,

14.1.10Computedvalueswhenrequired,ofvolumeresis-tivityinohm-centimetres,volumeconductivityinsiemenspercentimetre,surfaceresistivityinohms(persquare),orsurfaceconductivityinsiemens(persquare),and

14.1.11Statementastowhetherthereportedvaluesare“apparent”or“steady-state.”

15.PrecisionandBias

15.1Precisionandbiasareinherentlyaffectedbythechoiceofmethod,apparatus,andspecimen.ForanalysisanddetailsseeSections7and9,andparticularly7.5.1-7.5.2.5.

16.Keywords

16.1DCresistance;insulationresistance;surfaceresistance;surfaceresistivity;volumeresistance;volumeresistivity

APPENDIXES

(NonmandatoryInformation)

X1.FACTORSAFFECTINGINSULATIONRESISTANCEORCONDUCTANCEMEASUREMENTS

X1.1InherentVariationinMaterials—Becauseofthevariabilityoftheresistanceofagivenspecimenundersimilartestconditionsandthenonuniformityofthesamematerialfromspecimentospecimen,determinationsareusuallynotreproducibletocloserthan10%andoftenareevenmorewidelydivergent(arangeofvaluesfrom10to1maybeobtainedunderapparentlyidenticalconditions).

X1.2Temperature—Theresistanceofelectricalinsulatingmaterialsisknowntochangewithtemperature,andthevariationoftencanberepresentedbyafunctionoftheform:(18)

R5Bem/T

(X1.1)

where:

R5resistance(orresistivity)ofaninsulatingmaterialor

system,

B5proportionalityconstant,m5activationconstant,and

T5absolutetemperatureinkelvin(K).

ThisequationisasimplifiedformoftheArrheniusequationrelatingtheactivationenergyofachemicalreactiontotheabsolutetemperature;andtheBoltzmannprinciple,agenerallawdealingwiththestatisticaldistributionofenergyamonglargenumbersofminuteparticlessubjecttothermalagitation.Theactivationconstant,m,hasavaluethatischaracteristicofaparticularenergyabsorptionprocess.Severalsuchprocessesmayexistwithinthematerial,eachwithadifferenteffectivetemperaturerange,sothatseveralvaluesofmwouldbeneededtofullycharacterizethematerial.Thesevaluesofmcanbedeterminedexperimentallybyplottingthenaturallogarithmofresistanceagainstthereciprocaloftheabsolutetemperature.Thedesiredvaluesofmareobtainedfromsuchaplotbymeasuringtheslopesofthestraight-linesectionsoftheplot.Thisderivesfrom(EqX1.1),foritfollowsthatbytakingthenaturallogarithmofbothsides:

1nR5lnB1m1

T(X1.2)

Thechangeinresistance(orresistivity)correspondingtoachangeinabsolutetemperaturefromT1toT2,basedonEqX1.1,andexpressedinlogarithmicform,is:

ln~R11

DT2/R1!5mST22T1D5mST1T2

D(X1.3)

Theseequationsarevalidoveratemperaturerangeonlyifthematerialdoesnotundergoatransitionwithinthistempera-turerange.Extrapolationsareseldomsafesincetransitionsareseldomobviousorpredictable.Asacorollary,deviationofaplotofthelogarithmofRagainst1/Tfromastraightlineisevidencethatatransitionisoccurring.Furthermore,inmakingcomparisonsbetweenmaterials,itisessentialthatmeasure-mentsbemadeovertheentirerangeofinterestforallmaterials.

NOTEX1.1—Theresistanceofanelectricalinsulatingmaterialmaybeaffectedbythetimeoftemperatureexposure.Therefore,equivalenttemperatureconditioningperiodsareessentialforcomparativemeasure-ments.

NOTEX1.2—Iftheinsulatingmaterialshowssignsofdeteriorationafterconditioningatelevatedtemperatures,thisinformationmustbeincludedwiththetestdata.

X1.3TemperatureandHumidity—Theinsulationresis-tanceofsoliddielectricmaterialsdecreasesbothwithincreas-ingtemperatureasdescribedinX1.2andwithincreasing

humidity(1,2,3,4).Volumeresistanceisparticularlysensitivetotemperaturechanges,whilesurfaceresistancechangeswidelyandveryrapidlywithhumiditychanges(2,3).Inbothcasesthechangeisexponential.Forsomematerialsachangefrom25to100°Cmaychangeinsulationresistanceorconduc-tancebyafactorof100000,oftenduetothecombinedeffectsoftemperatureandmoisturecontentchange;theeffectoftemperaturechangealoneisusuallymuchsmaller.Achangefrom25to90%relativehumiditymaychangeinsulationresistanceorconductancebyasmuchasafactorof1000000ormore.Insulationresistanceorconductanceisafunctionofboththevolumeandsurfaceresistanceorconductanceofthespecimen,andsurfaceresistancechangesalmostinstanta-neouslywithchangeofrelativehumidity.Itis,therefore,absolutelyessentialtomaintainbothtemperatureandrelativehumiditywithincloselimitsduringtheconditioningperiodandtomaketheinsulationresistanceorconductancemeasurementsinthespecifiedconditioningenvironment.Anotherpointnottobeoverlookedisthatatrelativehumiditiesabove90%,surfacecondensationmayresultfrominadvertantfluctuationsinhu-midityortemperatureproducedbytheconditioningsystem.Thisproblemcanbeavoidedbytheuseofequivalentabsolutehumidityataslightlyhighertemperature,asequilibriummoisturecontentremainsnearlythesameforasmalltempera-turechange.Indeterminingtheeffectofhumidityonvolumeresistanceorconductance,extendedperiodsofconditioningarerequired,sincetheabsorptionofwaterintothebodyofthedielectricisarelativelyslowprocess(10).Somespecimensrequiremonthstocometoequilibrium.Whensuchlongperiodsofconditioningareprohibitive,useofthinnerspeci-mensorcomparativemeasurementsnearequilibriummaybereasonablealternatives,butthedetailsmustbeincludedinthetestreport.

X1.4TimeofElectrification—Measurementofadielectricmaterialisnotfundamentallydifferentfromthatofaconductorexceptthatanadditionalparameter,timeofelectrification,(andinsomecasesthevoltagegradient)isinvolved.Therelation-shipbetweentheappliedvoltageandthecurrentisinvolvedinbothcases.Fordielectricmaterials,thestandardresistanceplacedinserieswiththeunknownresistancemusthavearelativelylowvalue,sothatessentiallyfullvoltagewillbeappliedacrosstheunknownresistance.Whenapotential

differenceisappliedtoaspecimen,thecurrentthroughitgenerallydecreasesasymptoticallytowardalimitingvaluewhichmaybelessthan0.01ofthecurrentobservedattheendof1min(9,11).Thisdecreaseofcurrentwithtimeisduetodielectricabsorption(interfacialpolarization,volumecharge,etc.)andthesweepofmobileionstotheelectrodes.Ingeneral,therelationofcurrentandtimeisoftheformI(t)5At−m,aftertheinitialchargeiscompletedanduntilthetrueleakagecurrentbecomesasignificantfactor(12,13).InthisrelationAisaconstant,numericallythecurrentatunittime,andmusually,butnotalways,hasavaluebetween0and1.Dependinguponthecharacteristicsofthespecimenmaterial,thetimerequiredforthecurrenttodecreasetowithin1%ofthisminimumvaluemaybefromafewsecondstomanyhours.Thus,inordertoensurethatmeasurementsonagivenmaterialwillbecompa-rable,itisnecessarytospecifythetimeofelectrification.Theconventionalarbitrarytimeofelectrificationhasbeen1min.Forsomematerials,misleadingconclusionsmaybedrawnfromthetestresultsobtainedatthisarbitrarytime.Aresistance-timeorconductance-timecurveshouldbeobtainedundertheconditionsoftestforagivenmaterialasabasisforselectionofasuitabletimeofelectrification,whichmustbespecifiedinthetestmethodforthatmaterial,orsuchcurvesshouldbeusedforcomparativepurposes.Occasionally,amaterialwillbefoundforwhichthecurrentincreaseswithtime.Inthiscaseeitherthetimecurvesmustbeusedoraspecialstudyundertaken,andarbitrarydecisionsmadeastothetimeofelectrification.X1.5MagnitudeofVoltage:

X1.5.1Bothvolumeandsurfaceresistanceorconductanceofaspecimenmaybevoltage-sensitive(4).Inthatcase,itisnecessarythatthesamevoltagegradientbeusedifmeasure-mentsonsimilarspecimensaretobecomparable.Also,theappliedvoltageshouldbewithinatleast5%ofthespecifiedvoltage.ThisisaseparaterequirementfromthatgiveninX1.7.3,whichdiscussesvoltageregulationandstabilitywhereappreciablespecimencapacitanceisinvolved.

X1.5.2Commonlyspecifiedtestvoltagestobeappliedtothecompletespecimenare100,250,500,1000,2500,5000,10000and15000V.Ofthese,themostfrequentlyusedare100and500V.Thehighervoltagesareusedeithertostudythevoltage-resistanceorvoltage-conductancecharacteristicsofmaterials(tomaketestsatorneartheoperatingvoltagegradients),ortoincreasethesensitivityofmeasurement.X1.5.3Specimenresistanceorconductanceofsomemate-rialsmay,dependinguponthemoisturecontent,beaffectedbythepolarityoftheappliedvoltage.Thiseffect,causedbyelectrolysisorionicmigration,orboth,particularlyinthepresenceofnonuniformfields,maybeparticularlynoticeableininsulationconfigurationssuchasthosefoundincableswherethetest-voltagegradientisgreaterattheinnerconductorthanattheoutersurface.Whereelectrolysisorionicmigrationdoesexistinspecimens,theelectricalresistancewillbelowerwhenthesmallertestelectrodeismadenegativewithrespecttothelarger.Insuchcases,thepolarityoftheappliedvoltageshallbespecifiedaccordingtotherequirementsofthespeci-menundertest.

X1.6ContourofSpecimen:

X1.6.1Themeasuredvalueoftheinsulationresistanceorconductanceofaspecimenresultsfromthecompositeeffectofitsvolumeandsurfaceresistancesorconductances.Sincetherelativevaluesofthecomponentsvaryfrommaterialtomaterial,comparisonofdifferentmaterialsbytheuseoftheelectrodesystemsofFig.1,Fig.2,andFig.3isgenerallyinconclusive.Thereisnoassurancethat,ifmaterialAhasahigherinsulationresistancethanmaterialBasmeasuredbytheuseofoneoftheseelectrodesystems,itwillalsohaveahigherresistancethanBintheapplicationforwhichitisintended.X1.6.2Itispossibletodevisespecimenandelectrodeconfigurationssuitablefortheseparateevaluationofthevolumeresistanceorconductanceandtheapproximatesurfaceresistanceorconductanceofthesamespecimen.Ingeneral,thisrequiresatleastthreeelectrodessoarrangedthatonemayselectelectrodepairsforwhichtheresistanceorconductancemeasuredisprimarilythatofeitheravolumecurrentpathorasurfacecurrentpath,notboth(7).

X1.7DeficienciesintheMeasuringCircuit:

X1.7.1Theinsulationresistanceofmanysoliddielectricspecimensisextremelyhighatstandardlaboratoryconditions,approachingorexceedingthemaximummeasurablelimitsgiveninTable2.Unlessextremecareistakenwiththeinsulationofthemeasuringcircuit,thevaluesobtainedaremoreameasureofapparatuslimitationsthanofthematerialitself.Thuserrorsinthemeasurementofthespecimenmayarisefromundueshuntingofthespecimen,referenceresistors,orthecurrent-measuringdevice,byleakageresistancesorconductancesofunknown,andpossiblyvariable,magnitude.X1.7.2Electrolytic,contact,orthermalemf’smayexistinthemeasuringcircuititself;orspuriousemf’smaybecausedbyleakagefromexternalsources.Thermalemf’sarenormallyinsignificantexceptinthelowresistancecircuitofagalva-nometerandshunt.Whenthermalemf’sarepresent,randomdriftsinthegalvanometerzerooccur.Slowdriftsduetoaircurrentsmaybetroublesome.Electrolyticemf’sareusuallyassociatedwithmoistspecimensanddissimilarmetals,butemf’sof20mVormorecanbeobtainedintheguardcircuitofahigh-resistancedetectorwhenpiecesofthesamemetalareincontactwithmoistspecimens.Ifavoltageisappliedbetweentheguardandtheguardedelectrodesapolarizationemfmayremainafterthevoltageisremoved.Truecontactemf’scanbedetectedonlywithanelectrometerandarenotasourceoferror.Theterm“spuriousemf’’issometimesappliedtoelectrolyticemf’s.Toensuretheabsenceofspuriousemf’sofwhateverorigin,thedeflectionofthedetectingdeviceshouldbeobservedbeforetheapplicationofvoltagetothespecimenandafterthevoltagehasbeenremoved.Ifthetwodeflectionsarethesame,ornearlythesame,acorrectioncanbemadetothemeasuredresistanceorconductance,providedthecorrec-tionissmall.Ifthedeflectionsdifferwidely,orapproachthedeflectionofthemeasurement,itwillbenecessarytofindandeliminatethesourceofthespuriousemf(5).Capacitancechangesintheconnectingshieldedcablescancauseseriousdifficulties.

X1.7.3Whereappreciablespecimencapacitanceisin-volved,boththeregulationandtransientstabilityoftheappliedvoltageshouldbesuchthatresistanceorconductancemeasure-mentscanbemadetoprescribedaccuracy.Short-timetran-sients,aswellasrelativelylong-timedriftsintheappliedvoltagemaycausespuriouscapacitivechargeanddischargecurrentswhichcansignificantlyaffecttheaccuracyofmea-surement.Inthecaseofcurrent-measuringmethodsparticu-larly,thiscanbeaseriousproblem.ThecurrentinthemeasuringinstrumentduetoavoltagetransientisI05CxdV/dt.Theamplitudeandrateofpointerexcursionsdependuponthefollowingfactors:

X1.7.3.1Thecapacitanceofthespecimen,

X1.7.3.2Themagnitudeofthecurrentbeingmeasured,X1.7.3.3Themagnitudeanddurationoftheincomingvoltagetransient,anditsrateofchange,

X1.7.3.4Theabilityofthestabilizingcircuitusedtopro-videaconstantvoltagewithincomingtransientsofvariouscharacteristics,and

X1.7.3.5Thetime-constantofthecompletetestcircuitascomparedtotheperiodanddampingofthecurrent-measuringinstrument.

X1.7.4Changesofrangeofacurrent-measuringinstrumentmayintroduceacurrenttransient.WhenRCequationofthistransientis

m[Lt]RxandCm[Lt]x,theI5~V0/Rx!@I2e2t/RmCx#

(X1.4)

where:

VR05appliedvoltage,

Rx5apparenteffectiveresistanceinputresistanceofthespecimen,

m5ofthemeasuringinstru-C5ment,

Cxcapacitanceofthespecimenat1000Hz,

tm55inputtimeaftercapacitanceRisswitchedofthemeasuringintothecircuit.instrument,andmFornotmorethan5%errorduetothistransient,

RmCx#t/3

(X1.5)

Microammetersemployingfeedbackareusuallyfreeofthissourceoferrorastheactualinputresistanceisdivided,effectively,bytheamountoffeedback,usuallyatleastby1000.X1.8ResidualCharge—InX1.4itwaspointedoutthatthecurrentcontinuesforalongtimeaftertheapplicationofapotentialdifferencetotheelectrodes.Conversely,currentwillcontinueforalongtimeaftertheelectrodesofachargedspecimenareconnectedtogether.Itshouldbeestablishedthatthetestspecimeniscompletelydischargedbeforeattemptingthefirstmeasurement,arepeatmeasurement,ameasurementofvolumeresistancefollowingameasurementofsurfaceresis-tance,orameasurementwithreversedvoltage(9).Thetimeofdischargebeforemakingameasurementshouldbeatleastfour

timesanypreviouschargingtime.Thespecimenelectrodesshouldbeconnectedtogetheruntilthemeasurementistobemadetopreventanybuild-upofchargefromthesurroundings.X1.9Guarding:

X1.9.1Guardingdependsoninterposing,inallcriticalinsulatedpaths,guardconductorswhichinterceptallstraycurrentsthatmightotherwisecauseerrors.Theguardconduc-torsareconnectedtogether,constitutingtheguardsystemandforming,withthemeasuringterminals,athree-terminalnet-work.Whensuitableconnectionsaremade,straycurrentsfromspuriousexternalvoltagesareshuntedawayfromthemeasur-ingcircuitbytheguardsystem.

X1.9.2ProperuseoftheguardsystemforthemethodsinvolvingcurrentmeasurementisillustratedinFigs.X1.1-X1.3,inclusive,wheretheguardsystemisshownconnectedtothejunctionofthevoltagesourceandcurrent-measuringinstrumentorstandardresistor.InFig.X1.4fortheWheatstone-bridgemethod,theguardsystemisshowncon-nectedtothejunctionofthetwolower-valued-resistancearms.Inallcases,tobeeffective,guardingmustbecomplete,andmustincludeanycontrolsoperatedbytheobserverinmakingthemeasurement.Theguardsystemisgenerallymaintainedatapotentialclosetothatoftheguardedterminal,butinsulatedfromit.Thisisbecause,amongotherthings,theresistanceofmanyinsulatingmaterialsisvoltage-dependent.Otherwise,thedirectresistancesorconductancesofathree-terminalnetworkareindependentoftheelectrodepotentials.Itisusualtogroundtheguardsystemandhenceonesideofthevoltagesourceandcurrent-measuringdevice.Thisplacesbothterminalsofthespecimenaboveground.Sometimes,oneterminalofthespecimenispermanentlygrounded.Thecurrent-measuringdeviceusuallyisthenconnectedtothisterminal,requiringthatthevoltagesourcebewellinsulatedfromground.

X1.9.3Errorsincurrentmeasurementsmayresultfromthefactthatthecurrent-measuringdeviceisshuntedbytheresistanceorconductancebetweentheguardedterminalandtheguardsystem.Thisresistanceshouldbeatleast10to100timestheinputresistanceofthecurrentmeasuringdevice.Insomebridgetechniques,theguardandmeasuringterminalsarebroughttonearlythesamepotentials,butastandardresistorinthebridgeisshuntedbetweentheunguardedterminalandtheguardsystem.Thisresistanceshouldbeatleast1000timesthatofthereferenceresistor.

FIG.X1.1Voltmeter-AmmeterMethodUsingaGalvanometer

FIG.X1.2Voltmeter-AmmeterMethodUsingDCAmplification

FIG.X1.3ComparisonMethodUsingaGalvanometer

FIG.X1.4ComparisonMethodUsingaWheatstoneBridge

X2.EFFECTIVEAREAOFGUARDEDELECTRODE

X2.1General—CalculationofvolumeresistivityfromthemeasuredvolumeresistanceinvolvesthequantityA,theeffectiveareaoftheguardedelectrode.Dependingonthematerialpropertiesandtheelectrodeconfiguration,Adiffersfromtheactualareaoftheguardedelectrodeforeither,orboth,ofthefollowingreasons.

X2.1.1Fringingofthelinesofcurrentintheregionoftheelectrodeedgesmayeffectivelyincreasetheelectrodedimen-sions.

X2.1.2Ifplaneelectrodesarenotparallel,oriftubularelectrodesarenotcoaxial,thecurrentdensityinthespecimenwillnotbeuniform,andanerrormayresult.Thiserrorisusuallysmallandmaybeignored.

X2.2Fringing:

X2.2.1Ifthespecimenmaterialishomogeneousandisotro-pic,fringingeffectivelyextendstheguardedelectrodeedgebyanamount(14,19):

~g/2!2d

(X2.1)

where:

d5t$~2/p!lncosh@~p/4!~g/t!#%,

(X2.2)

andgandtarethedimensionsindicatedinFig.4andFig.6.Thecorrectionmayalsobewritten

g@12~2d/g!#5Bg

(X2.3)

whereBisthefractionofthegapwidthtobeaddedtothe

diameterofcircularelectrodesortothedimensionsofrectan-gularorcylindricalelectrodes.

X2.2.2Laminatedmaterials,however,aresomewhataniso-tropicaftervolumeabsorptionofmoisture.Volumeresistivityparalleltothelaminationsisthenlowerthanthatintheperpendiculardirection,andthefringingeffectisincreased.Withsuchmoistlaminates,dapproacheszero,andtheguardedelectrodeeffectivelyextendstothecenterofthegapbetweenguardedandunguardedelectrodes(14).

X2.2.3Thefractionofthegapwidthgtobeaddedtothediameterofcircularelectrodesortotheelectrodedimensionsofrectangularorcylindricalelectrodes,B,asdeterminedbytheprecedingequationford,isasfollows:

g/t0.10.20.30.4

B0.960.920.880.85

g/t1.01.21.52.0

B0.0.590.510.41

0.50.60.80.810.770.71

2.53.00.340.29

NOTEX2.1—Thesymbol“ln”designateslogarithmtothebasee52.718....Whengisapproximatelyequalto2t,disdeterminedwithsufficientapproximationbytheequation:

d50.586t(X2.4)

NOTEX2.2—Fortestsonthinfilmswhent<NOTEX2.3—Duringthetransitionbetweencompletedrynessandsubsequentrelativelyuniformvolumedistributionofmoisture,alaminateisneitherhomogeneousnorisotropic.Volumeresistivityisofquestionablesignificanceduringthistransitionandaccurateequationsareneitherpossiblenorjustified,calculationswithinanorderofmagnitudebeingmorethansufficient.

X3.TYPICALMEASUREMENTMETHODS

X3.1Voltmeter-AmmeterMethodUsingaGalvanometer:X3.1.1AdcvoltmeterandagalvanometerwithasuitableshuntareconnectedtothevoltagesourceandtothetestspecimenasshowninFig.X1.1.Theappliedvoltageismeasuredbyadcvoltmeter,havingarangeandaccuracythatwillgiveminimumerrorinvoltageindication.Innocaseshallavoltmeterbeusedthathasanerrorgreaterthan62%offullscale,norarangesuchthatthedeflectionislessthanonethirdoffullscale(forapivot-typeinstrument).Thecurrentismeasuredbyagalvanometerhavingahighcurrentsensitivity(ascalelengthof0.5misassumed,asshorterscalelengthswillleadtoproportionatelyhighererrors)andprovidedwithaprecisionAyrtonuniversalshuntforsoadjustingitsdeflectionthatthereadabilityerrordoesnot,ingeneral,exceed62%oftheobservedvalue.Thegalvanometershouldbecalibratedtowithin62%.Currentcanbereaddirectlyifthegalvanometerisprovidedwithanadditionalsuitablefixedshunt.

X3.1.2Theunknownresistance,Rx,orconductance,Gx,iscalculatedasfollows:

Rx51/Gx5Vx/Ix5Vx/KdF

(X3.1)

where:

K5galvanometersensitivity,inamperesperscaledivi-sion,

d5deflectioninscaledivisions,F5ratioofthetotalcurrent,Ix,tothegalvanometer

current,and

Vx5appliedvoltage.

X3.2Voltmeter-AmmeterMethodUsingDCAmplificationorElectrometer:

X3.2.1Thevoltmeter-ammetermethodcanbeextendedtomeasurehigherresistancesbyusingdcamplificationoranelectrometertoincreasethesensitivityofthecurrentmeasuringdevice(6,15,16).Generally,butnotnecessarily,thisisachievedonlywithsomesacrificeinprecision,dependingontheapparatusused.Thedcvoltmeterandthedcamplifieror

electrometerareconnectedtothevoltagesourceandthespecimenasillustratedinFig.X1.2.TheappliedvoltageismeasuredbyadcvoltmeterhavingthesamecharacteristicsasprescribedinX3.1.1.Thecurrentismeasuredintermsofthevoltagedropacrossastandardresistance,Rs.

X3.2.2InthecircuitshowninFig.X1.2(a)thespecimencurrent,Ix,producesacrossthestandardresistance,Rs,avoltagedropwhichisamplifiedbythedcamplifier,andreadonanindicatingmeterorgalvanometer.Thenetgainoftheamplifierusuallyisstabilizedbymeansofafeedbackresis-tance,Rf,fromtheoutputoftheamplifier.Theindicatingmetercanbecalibratedtoreaddirectlyintermsofthefeedbackvoltage,Vf,whichisdeterminedfromtheknownvalueoftheresistanceofRf,andthefeedbackcurrentpassingthroughit.Whentheamplifierhassufficientintrinsicgain,thefeedbackvoltage,Vs,differsfromthevoltage,IxRs,byanegligibleamount.AsshowninFig.X1.2(a)thereturnleadfromthevoltagesource,Vx,canbeconnectedtoeitherendofthefeedbackresistor,Rf.WiththeconnectionmadetothejunctionofRsandRf(switchindottedpositionl),theentireresistanceofRsisplacedinthemeasuringcircuitandanyalternatingvoltageappearingacrossthespecimenresistanceisamplifiedonlyasmuchasthedirectvoltageIxRs,acrossRs.WiththeconnectionmadetotheotherendofRf(switchposition2),theapparentresistanceplacedinthemeasuringcircuitisRstimestheratioofthedegeneratedgaintotheintrinsicgainoftheamplifier;anyalternatingvoltageappearingacrossthespeci-menresistanceisthenamplifiedbytheintrinsicamplifiergain.X3.2.3InthecircuitshowninFig.X1.2(b),thespecimencurrent,Ix,producesavoltagedropacrossthestandardresistance,Rswhichmayormaynotbebalancedoutbyadjustmentofanopposingvoltage,Vs,fromacalibratedpotentiometer.Ifnoopposingvoltageisused,thevoltagedropacrossthestandardresistance,Rs,isamplifiedbythedcamplifierorelectrometerandreadonanindicatingmeterorgalvanometer.Thisproducesavoltagedropbetweenthe

measuringelectrodeandtheguardelectrodewhichmaycauseanerrorinthecurrentmeasurementunlesstheresistancebetweenthemeasuringelectrodeandtheguardelectrodeisatleast10to100timesthatofRs.Ifanopposingvoltage,Vs,isused,thedcamplifierorelectrometerservesonlyasaverysensitive,high-resistancenulldetector.Thereturnleadfromthevoltagesource,Vx,isconnectedasshown,toincludethepotentiometerinthemeasuringcircuit.Whenconnectionsaremadeinthismanner,noresistanceisplacedinthemeasuringcircuitatbalanceandthusnovoltagedropappearsbetweenthemeasuringelectrodeandtheguardelectrode.However,asteeplyincreasingfractionofRsisincludedinthemeasuringcircuit,asthepotentiometerismovedoffbalance.Anyalternatingvoltageappearingacrossthespecimenresistanceisamplifiedbythenetamplifiergain.Theamplifiermaybeeitheradirectvoltageamplifieroranalternatingvoltageamplifierprovidedwithinputandoutputconverters.Inducedalternatingvoltagesacrossthespecimenoftenaresufficientlytroublesomethataresistance-capacitancefilterprecedingtheamplifierisrequired.Theinputresistanceofthisfiltershouldbeatleast100timesgreaterthantheeffectresistancethatisplacedinthemeasurementcircuitbyresistanceRRs.

X3.2.4Theresistancelatedasfollows:

x,ortheconductance,Gx,iscalcu-Rx51/Gx5Vx/Ix5~Vx/Vs!Rs

(X3.2)

where:VIx5appliedRx5specimenvoltage,Vs5standardcurrent,

s5

voltagedropresistance,acrossand

Rs,indicatedbytheamplifieroutputmeter,theelectrometerorthecalibratedpotentiometer.

X3.3VoltageRate-of-ChangeMethod:

X3.3.1Ifthespecimencapacitanceisrelativelylarge,orcapacitorsaretobemeasured,theapparentresistant,Rthechargingvoltage,Vx,canbedeterminedfrom0,thespecimencapacitancevalue,Cofvoltage,0(capacitanceofCdV/dt,usingthexat1000Hz),andtherate-of-changecircuitofFig.X3.1(17).TomakeameasurementthespecimenischargedbyclosingSS2,withtheelectrometershortingswitchS1closed.When1issubsequentlyopened,thevoltageacrossthespecimenwillfallbecausetheleakageandabsorptioncurrentsmustthenbesuppliedbythecapacitanceC0ratherthanbyVThedropinvoltageacrossthespecimenwillbeshownbythe0.electrometer.Ifarecorderisconnectedtotheoutputoftheelectrometer,therateofchangeofvoltage,dV/dt,canbereadfromtherecordertraceatanydesiredtimeafterS2isclosed(60

FIG.X3.1VoltageRate-of-ChangeMethod

susuallyspecified).Alternatively,thevoltage,DV,appearingontheelectrometerinatime,Dt,canbeused.Sincethisgivesanaverageoftherate-of-changeofvoltageduringDt,thetimeDtshouldbecenteredatthespecifiedelectrificationtime(timesinceclosingS2).

X3.3.2Iftheinputresistanceoftheelectrometerisgreaterthantheapparentspecimenresistanceandtheinputcapaci-tanceis0.01orlessofthatofthespecimen,theapparentresistanceatthetimeatwhichdV/dtorDV/Dtisdeterminedis

Rx5V0/Ix5V0dt/C0dVmor,V0Dt/C0DVm

(X3.3)

dependingonwhetherornotarecorderisused.WhentheelectrometerinputresistanceorcapacitancecannotbeignoredorwhenVmismorethanasmallfractionofV0thecompleteequationshouldbeused.

Rs5$V0@~Rx1Rm!/Rm#Vm%/~C01Cm!dVm/dt

(X3.4)

where:CR05capacitanceinputofCm5Vm5inputresistanceCofxatthe1000Hz,

V05appliedcapacitancem5

electrometervoltage,readingand

oftheelectrometer,electrometer,5voltagedecreaseonCx.

X3.4ComparisonMethodUsingaGalvanometerorDCAmplifier(1):

X3.4.1Astandardresistance,Rs,andagalvanometerordcamplifierareconnectedtothevoltagesourceandtothetestspecimenasshowninFig.X3.1.ThegalvanometeranditsassociatedAyrtonshuntisthesameasdescribedinX3.1.1.Anamplifierofequivalentdirectcurrentsensitivitywithanappropriateindicatormaybeusedinplaceofthegalvanometer.Itisconvenient,butnotnecessary,andnotdesirableifbatteriesareusedasthevoltagesource(unlessahigh-inputresistancevoltmeterisused),toconnectavoltmeteracrossthesourceforacontinuouscheckofitsvoltage.Theswitchisprovidedforshortingtheunknownresistanceintheprocessofmeasure-ment.Sometimesprovisionismadetoshorteithertheun-knownorstandardresistancebutnotbothatthesametime.X3.4.2Ingeneral,itispreferabletoleavethestandardresistanceinthecircuitatalltimestopreventdamagetothecurrentmeasuringinstrumentincaseofspecimenfailure.Withtheshuntsettotheleastsensitivepositionandwiththeswitchopen,thevoltageisapplied.TheAyrtonshuntisthenadjustedtogiveasnearmaximumscalereadingaspossible.Attheendoftheelectrificationtimethedeflection,dsettox,andtheshuntratio,Fx,arenoted.Theshuntisthentheleastsensitivepositionandtheswitchisclosedtoshorttheunknownresistance.Againtheshuntisadjustedtogiveasnearmaxi-mumscalereadingaspossibleandthegalvanometerormeterdeflection,ds,andtheshuntratio,Fofthegalvanometers,arenoted.Itisassumedthatthecurrentsensitivitiesoramplifierareequalfornearlyequaldeflectionsdxandds.

X3.4.3Theunknownresistance,Rx,orconductance,Gx,iscalculatedasfollows:

R51/Gx5Rs@~dsFs/dxFx!–1#

(X3.5)

where:

5ratiosofthetotalcurrenttothegalvanometerordcamplifierwithRxinthecircuit,andshorted,respectively.

X3.4.4IncaseRsisshortedwhenRxisinthecircuitortheratioofFstoFxisgreaterthan100,thevalueofRxorGxiscomputedasfollows:FxandFsRx51/Gx5R~dsFs/dxFx!

(X3.6)

X3.5ComparisonMethodsUsingaWheatstoneBridge(2):X3.5.1ThetestspecimenisconnectedintoonearmofaWheatstonebridgeasshowninFig.X1.4.Thethreeknownarmsshallbeofashighresistanceaspracticable,limitedbytheerrorsinherentinsuchresistors.Usually,thelowestresistance,RA,isusedforconvenientbalanceadjustment,witheitherRBorRNbeingchangedindecadesteps.Thedetectorshallbeadcamplifier,withaninputresistancehighcomparedtoanyofthesearms.

X3.5.2Theunknownresistance,Rx,orconductance,Gx,iscalculatedasfollows:

Rx51/Gx5RBRN/RA

(X3.7)

indicatingmeterofFig.X1.2(a)canbereplacedbyarecordingmilliammeterormillivoltmeterasappropriatefortheamplifierused.Therecordermaybeeitherthedeflectiontypeorthenull-balancetype,thelatterusuallyhavingasmallererror.Null-balance-typerecordersalsocanbeemployedtoperformthefunctionofautomaticallyadjustingthepotentiometershowninFig.X1.2(b)andtherebyindicatingandrecordingthequantityundermeasurement.Thecharacteristicsofamplifier,recorderbalancingmechanism,andpotentiometercanbemadesuchastoconstituteawellintegrated,stable,electromechani-cal,feedbacksystemofhighsensitivityandlowerror.Suchsystemsalsocanbearrangedwiththepotentiometerfedfromthesamesourceofstablevoltageasthespecimen,therebyeliminatingthevoltmetererror,andallowingasensitivityandprecisioncomparablewiththoseoftheWheatstone-BridgeMethod(X3.5).

X3.7Direct-ReadingInstruments—Thereareavailable,andingeneraluse,instrumentsthatindicateresistancedirectly,byadeterminationoftheratioofvoltageandcurrentinbridgemethodsorrelatedmodes.Someunitsincorporatevariousadvancedfeaturesandrefinementssuchasdigitalreadout.Mostdirectreadinginstrumentsareself-contained,portable,andcompriseastabledcpowersupplywithmulti-testvoltagecapability,anulldetectororanindicator,andallrelevantauxiliaries.Measurementaccuraciesvarysomewhatwithtypeofequipmentandrangeofresistancescovered;forthemoreelaborateinstrumentsaccuraciesarecomparabletothoseobtainedwiththevoltmeter-ammetermethodusingagalva-nometer(X3.1).Thedirect-readinginstrumentsdonotneces-sarilysupplantanyoftheothertypicalmeasurementmethodsdescribedinthisAppendix,butdooffersimplicityandconve-nienceforbothroutineandinvestigativeresistancemeasure-ments.

whereRA,RB,andRNareasshowninFig.X1.4.WhenarmAisarheostat,itsdialcanbecalibratedtoreaddirectlyinmegohmsaftermultiplyingbythefactorRBRNwhichforconveniencecanbevariedindecadesteps.

X3.6Recordings—Itispossibletorecordcontinuouslyagainsttimethevaluesoftheunknownresistanceorthecorrespondingvalueofcurrentataknownvoltage.Generally,thisisaccomplishedbyanadaptationofthevoltmeter-ammetermethod,usingdcamplification(X3.2).Thezerodriftofdirectcoupleddcamplifiers,whileslowenoughforthemeasure-mentsofX3.2,maybetoofastforcontinuousrecording.Thisproblemcanberesolvedbyperiodicchecksofthezero,orbyusinganacamplifierwithinputandoutputconverter.The

REFERENCES

(1)Curtis,H.L.,“InsulatingPropertiesofSolidDielectric,”Bulletin,NationalInstituteofStandardsandTechnology,VolII,1915,ScientificPaperNo.234,pp.369–417.

(2)Field,R.F.,“HowHumidityAffectsInsulation,PartI,D-CPhenom-ena,”GeneralRadioExperimenter,Vol20,Nos.2and3,July–August1945.

(3)Field,R.F.,“TheFormationofIonizedWaterFilmsonDielectricsUnderConditionsofHighHumidity,”JournalofAppliedPhysics,Vol5,May1946.

(4)Herou,R.,andLaCoste,R.,“SurLaMe´sureDesResistivitiesetL’EtudedeConditionnementdesIsolantesenFeuilles,”ReportIEC15-GT2(France)April4,1963.

(5)Thompson,B.H.,andMathes,K.N.,“ElectrolyticCorrosion—MethodsofEvaluatingMaterialsUsedinTropicalService,”Transac-tions,AmericanInstituteofElectricalEngineers,Vol,June1945,p.287.

(6)Scott,A.H.,“AnomalousConductanceBehaviorinPolymers,”Reportofthe1965ConferenceonElectricalInsulation,NRC-NAS.

(7)Amey,W.G.,andHamberger,F.,Jr.,“AMethodforEvaluatingtheSurfaceandVolumeResistanceCharacteristicsofSolidDielectricMaterials,”Proceedings,AmericanSocietyforTestingandMaterials,Vol49,1949,pp.1079–1091.

(8)Witt,R.K.,Chapman,J.J.,andRaskin,B.L.,“MeasuringofSurfaceandVolumeResistance,”ModernPlastics,Vol24,No.8,April1947,p.152.

(9)Scott,A.H.,“InsulationResistanceMeasurements,”FourthElectricalInsulationConference,Washington,DC,February19–22,1962.

(10)Kline,G.M.,Martin,A.R.,andCrouse,W.A.,“SorptionofWaterby

Plastics,”Proceedings,AmericanSocietyforTestingandMaterials,Vol40,1940,pp.1273–1282.

(11)Greenfield,E.W.,“InsulationResistanceMeasurements,”Electrical

Engineering,Vol66,July1947,pp.698–703.

(12)Cole,K.S.,andCole,R.H.,“DispersionandAbsorptionin

Dielectrics,IIDirectCurrentCharacteristics,”JournalofChemicalPhysics,Vol10,1942.

(13)Field,R.F.,“InterpretationofCurrent-TimeCurvesasAppliedto

InsulationTesting,”AIEEBostonDistrictMeeting,April19–20,1944.

(14)Lauritzen,J.I.,“TheEffectiveAreaofaGuardedElectrode,”Annual

Report,ConferenceonElectricalInsulation.NAS-NRCPublication1141,1963.

(15)Turner,E.F.,Brancato,E.L.,andPrice,W.,“TheMeasurementof

InsulationConductivity,”NRLReport5060,NavalResearchLabo-ratory,Feb.25,1958.

(16)Dorcas,D.S.,andScott,R.N.,“InstrumentationforMeasuringthe

D-CConductivityofVeryHighResistivityMaterials,”ReviewofScientificInstruments,Vol35,No.9,September19.

(17)Endicott,H.S.,“InsulationResistance,Absorption,andTheirMea-surement,”AnnualReport,ConferenceonElectricalInsulation,NAS-NRCPublication,1958.

(18)Occhini,E.,andMaschio,G.,“ElectricalCharacteristicsofOil-ImpregnatedPaperasInsulationforHV-DCCables,”IEEETransac-tionsonPowerApparatusandSystems,VolPAS-86,No.3,March1967.

(19)Endicott,H.S.,“Guard-GapCorrectionforGuarded-ElectrodeMea-surementsandExactEquationsfortheTwo-FluidMethodofMea-suringPermittivityandLoss,”JournalofTestingandEvaluation,Vol4,No.3,May1976,pp.188–195.

TheAmericanSocietyforTestingandMaterialstakesnopositionrespectingthevalidityofanypatentrightsassertedinconnectionwithanyitemmentionedinthisstandard.Usersofthisstandardareexpresslyadvisedthatdeterminationofthevalidityofanysuchpatentrights,andtheriskofinfringementofsuchrights,areentirelytheirownresponsibility.Thisstandardissubjecttorevisionatanytimebytheresponsibletechnicalcommitteeandmustbereviewedeveryfiveyearsandifnotrevised,eitherreapprovedorwithdrawn.YourcommentsareinvitedeitherforrevisionofthisstandardorforadditionalstandardsandshouldbeaddressedtoASTMHeadquarters.Yourcommentswillreceivecarefulconsiderationatameetingoftheresponsibletechnicalcommittee,whichyoumayattend.IfyoufeelthatyourcommentshavenotreceivedafairhearingyoushouldmakeyourviewsknowntotheASTMCommitteeonStandards,attheaddressshownbelow.ThisstandardiscopyrightedbyASTM,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,UnitedStates.Individualreprints(singleormultiplecopies)ofthisstandardmaybeobtainedbycontactingASTMattheaboveaddressorat610-832-9585(phone),610-832-9555(fax),orservice@astm.org(e-mail);orthroughtheASTMwebsite(www.astm.org).

因篇幅问题不能全部显示,请点此查看更多更全内容